
The Jackson Laboratory
The Mouseion at the JAXlibrary

Faculty Research 2018 Faculty Research

4-10-2018

NKX2-5 regulates human cardiomyogenesis via a
HEY2 dependent transcriptional network.
David J Anderson

David I Kaplan

Katrina M Bell

Katerina Koutsis

John M Haynes

See next page for additional authors

Follow this and additional works at: https://mouseion.jax.org/stfb2018

Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons

This Article is brought to you for free and open access by the Faculty Research at The Mouseion at the JAXlibrary. It has been accepted for inclusion in
Faculty Research 2018 by an authorized administrator of The Mouseion at the JAXlibrary. For more information, please contact
Douglas.Macbeth@jax.org.

Recommended Citation
Anderson, David J; Kaplan, David I; Bell, Katrina M; Koutsis, Katerina; Haynes, John M; Mills, Richard J; Phelan, Dean G; Qian,
Elizabeth L; Leitoguinho, Ana Rita; Arasaratnam, Deevina; Labonne, Tanya; Ng, Elizabeth S; Davis, Richard P; Casini, Simona;
Passier, Robert; Hudson, James E; Porrello, Enzo R; Costa, Mauro W; Rafii, Arash; Curl, Clare L; Delbridge, Lea M; Harvey, Richard
P; Oshlack, Alicia; Cheung, Michael M; Mummery, Christine L; Petrou, Stephen; Elefanty, Andrew G; Stanley, Edouard G; and
Elliott, David A, "NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network." (2018). Faculty
Research 2018. 76.
https://mouseion.jax.org/stfb2018/76

https://mouseion.jax.org?utm_source=mouseion.jax.org%2Fstfb2018%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mouseion.jax.org/stfb2018?utm_source=mouseion.jax.org%2Fstfb2018%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mouseion.jax.org/fac_research?utm_source=mouseion.jax.org%2Fstfb2018%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mouseion.jax.org/stfb2018?utm_source=mouseion.jax.org%2Fstfb2018%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=mouseion.jax.org%2Fstfb2018%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=mouseion.jax.org%2Fstfb2018%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mouseion.jax.org/stfb2018/76?utm_source=mouseion.jax.org%2Fstfb2018%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Douglas.Macbeth@jax.org


Authors
David J Anderson, David I Kaplan, Katrina M Bell, Katerina Koutsis, John M Haynes, Richard J Mills, Dean G
Phelan, Elizabeth L Qian, Ana Rita Leitoguinho, Deevina Arasaratnam, Tanya Labonne, Elizabeth S Ng,
Richard P Davis, Simona Casini, Robert Passier, James E Hudson, Enzo R Porrello, Mauro W Costa, Arash
Rafii, Clare L Curl, Lea M Delbridge, Richard P Harvey, Alicia Oshlack, Michael M Cheung, Christine L
Mummery, Stephen Petrou, Andrew G Elefanty, Edouard G Stanley, and David A Elliott

This article is available at The Mouseion at the JAXlibrary: https://mouseion.jax.org/stfb2018/76

https://mouseion.jax.org/stfb2018/76?utm_source=mouseion.jax.org%2Fstfb2018%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages


ARTICLE

NKX2-5 regulates human cardiomyogenesis via a
HEY2 dependent transcriptional network
David J. Anderson1, David I. Kaplan2, Katrina M. Bell1, Katerina Koutsis1, John M. Haynes3, Richard J. Mills4,

Dean G. Phelan1, Elizabeth L. Qian1, Ana Rita Leitoguinho1, Deevina Arasaratnam1, Tanya Labonne1,

Elizabeth S. Ng1, Richard P. Davis5, Simona Casini5, Robert Passier5, James E. Hudson4, Enzo R. Porrello4,

Mauro W. Costa6, Arash Rafii7,8, Clare L. Curl9, Lea M. Delbridge9, Richard P. Harvey10,11, Alicia Oshlack 1,

Michael M. Cheung1,12, Christine L. Mummery5, Stephen Petrou2, Andrew G. Elefanty1,12,13,

Edouard G. Stanley1,12,13 & David A. Elliott 1,14,15

Congenital heart defects can be caused by mutations in genes that guide cardiac lineage

formation. Here, we show deletion of NKX2-5, a critical component of the cardiac gene

regulatory network, in human embryonic stem cells (hESCs), results in impaired cardio-

myogenesis, failure to activate VCAM1 and to downregulate the progenitor marker PDGFRα.
Furthermore, NKX2-5 null cardiomyocytes have abnormal physiology, with asynchronous

contractions and altered action potentials. Molecular profiling and genetic rescue experi-

ments demonstrate that the bHLH protein HEY2 is a key mediator of NKX2-5 function during

human cardiomyogenesis. These findings identify HEY2 as a novel component of the NKX2-5

cardiac transcriptional network, providing tangible evidence that hESC models can decipher

the complex pathways that regulate early stage human heart development. These data

provide a human context for the evaluation of pathogenic mutations in congenital heart

disease.
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Perturbations of the gene regulatory networks (GRNs) that
guide lineage formation during human cardiogenesis cause
congenital heart defects (CHDs)1. The core unit controlling

heart development consists of highly conserved transcription
factors in a GRN known as the cardiac kernel2. Mutations in
cardiac kernel members, such as GATA4, NKX2-5, and TBX5,
underlie a range of CHDs3–5. NKX2-5 encodes an NK-2 class
homeodomain protein that is a critical component of the cardiac
kernel in all vertebrates studied6. In humans, dominant mutations
in NKX2-5 cause a range of CHDs, mainly atrioventricular block
and atrial septal defects, with a spectrum of other structural
conditions such as ventricular septal defect and tetralogy of Fallot
at lower frequency6. In mice, deletion of Nkx2-5 blocks cardiac
looping due to impaired progenitor specification in the second
heart field7 and impairs ventricular chamber morphogenesis
resulting in embryonic lethality7–9. In addition, introduction of
dominant negative Nkx2-5 variants in the mouse causes similar
phenotypes to those observed in patients with NKX2-5 mutations,
such as AV block and atrial septal anomalies10,11. However, the
pleiotropic cardiac pathologies associated with NKX2-5 muta-
tions, in both mouse and human, suggest that expression of the
NKX2-5 target gene set is further modulated by interaction with
available co-factors at a given genomic location12–14.

To study the role of NKX2-5 in the cardiac GRN and human
cardiac development, we investigate cardiac differentiation
in vitro using a suite of genetically modified hESCs. We show that
NKX2-5 is required to complete cardiomyogenesis and that
hESC-derived cardiomyocytes (hESC-CMs) lacking NKX2-5 have
compromised expression of cardiac differentiation markers,
electrophysiology and contractile function. Gene expression
profiling and ChIP-seq identifies HEY2, a NOTCH-dependent
bHLH class transcription factor15, as a potential downstream
mediator of NKX2-5. Furthermore, genetic rescue experiments
show that HEY2 restores, in part, the cardiac muscle genetic
program in NKX2-5 null cardiomyocytes.

Results
NKX2-5 regulates cardiac progenitor cell differentiation. To
investigate NKX2-5 function we targeted the wildtype NKX2-5 allele
of the heterozygous HES3 NKX2-5eGFP/w line16. The resultant null
NKX2-5eGFP/eGFP hESC line (denoted NKX2-5−/−) was kar-
yotypically normal, expressed pluripotency markers and differ-
entiated into all three germ layers (Fig. 1a, Supplementary
Fig. 1a–e). As expected, cardiac cells derived from NKX2-5−/−

hESCs expressed GFP (Fig. 1b), but did not produce NKX2-5
protein whereas NKX2-5 levels were comparable between NKX2-
5eGFP/w and wildtype cells (Supplementary Fig. 1f). When differ-
entiated to the cardiac lineage as monolayers, NKX2-5−/− hESCs
formed GFP+ cells with similar kinetics to the parental NKX2-
5eGFP/w line and, by day 14 of differentiation, both cultures con-
tained similar proportions of GFP+ and ACTN2+ cells (Fig. 1b, c
and see Supplementary Fig. 1g, h for representative FACS plots).
However, the percentage of GFP+ cells was consistently lower in
NKX2-5−/− cultures at early time points (Fig. 1c), possibly resulting
from disruption of an NKX2-5 autoregulation loop17. When dif-
ferentiated as embryoid bodies, the onset of spontaneous con-
tractility of NKX2-5−/− cultures was similarly delayed but not
abrogated (Supplementary Fig. 1i), indicating that human NKX2-5
is not essential for cardiomyocyte contractility, consistent with
murine studies8. Furthermore, differentiated NKX2-5−/− cultures
expressed known cardiomyogenic markers, including TBX5,
GATA4, andMYH6, at comparable levels to NKX2-5eGFP/w cultures
(Fig. 1d). Despite these delays in the onset of contractility and
reduced proportion of early GFP expressing cells, superficially,
cardiac differentiation of NKX2-5−/− cultures appeared normal.

Flow cytometry analysis revealed both NKX2-5eGFP/w and
NKX2-5 null GFP positive populations were heterogenous, with
low GFP expressing cells representing cardiac precursors and
non-myocytes (Supplementary Fig. 1g)18–22. In addition,
NKX2-5−/− -derived GFP+ cells retained expression of PDGFRα,
a marker of cardiac progenitor cells required for heart tube
formation23, normally downregulated during heart develop-
ment7,24. GFP+ cells from differentiating cultures of both
NKX2-5eGFP/w and NKX2-5−/− cells expressed PDGFRα at day
14 (Supplementary Fig. 1j), but after extended culture to day 42,
few NKX2-5eGFP/w GFP+ cells expressed PDGFRα (9.5 ± 2.6%, n
= 5) whereas expression was maintained in NKX2-5−/− GFP+
cells (81.4 ± 3.0%, n= 5) (Fig. 1e, f). This is consistent with the
enduring and spatially expanded domain of Pdgfrα expression
observed in Nkx2-5 knockout mice, resulting from a failure to
repress a number of cardiac progenitor-expressed genes7. Thus,
perdurance of PDGFRα expression suggests incomplete differ-
entiation of NKX2-5 null cardiac cells. These data were
complemented by a reduced percentage of VCAM1+ cardiomyo-
cytes in differentiating NKX2-5−/− cultures (Fig. 1g, h). Further,
this cell surface marker phenotype is recapitulated in H9 hESCs
in which NKX2-5 has been deleted (NKX2-5eGFP/del; Supplemen-
tary Fig. 1k–m). Given that VCAM1 marks myocardial commit-
ment18, this data also suggested a block in cardiomyogenesis in
the absence of NKX2-5. In summary, cardiac differentiation of
NKX2-5−/− hESCs yielded contractile cardiomyocytes, but
reciprocally altered expression of VCAM1 and PDGFRα implies
perturbed differentiation.

Impaired function of NKX2-5−/− cardiomyocytes. NKX2-5 null
monolayer cardiomyocyte cultures displayed abnormal patterns
of contraction (Supplementary Movie 1). We correlated calcium
oscillations during contraction between adjacent areas in sheets of
beating cardiomyocytes, and demonstrated that NKX2-5eGFP/w

cardiac sheets showed greater synchronicity of contraction (cor-
relation co-efficient, R2, 0.69 ± 0.10, n= 5) than NKX2-5 null
cardiomyocyte monolayers (R2, 0.23 ± 0.09, n= 5) (Fig. 2a, b).
The maximal amplitude of calcium flux was also much higher in
NKX2-5eGFP/w cultures (Fig. 2c), suggesting that calcium handling
of NKX2-5 null cardiomyocytes was either defective or had not
reached an equivalent level of maturation.

Multi-electrode array (MEA) analysis showed that NKX2-
5eGFP/w and NKX2-5−/− cardiac aggregates had a similar basal
rate of contraction (Fig. 2d, e). However, NKX2-5−/− cardiac
aggregates exhibited a prolonged field potential duration at both
early (112 ± 7 ms in NKX2-5ew cells (283 ± 34 μN/w vs. 257 ± 12
ms in NKX2-5−/−, n= 21, p < 0.0001; Fig. 2d,f) and late stages of
differentiation (Supplementary Fig. 2a). Similarly, whole-cell
patch clamp analysis of spontaneously contracting single cells
demonstrated a similar rate of contraction between individual
NKX2-5eGFP/w and NKX2-5−/− cardiomyocytes (Supplementary
Fig. 2b, c), but prolonged action potential durations in individual
NKX2-5−/− cardiomyocytes at the same contraction rate (APD90
229 ± 21 ms in NKX2-5eGFP/w vs. 429 ± 34 ms in NKX2-5−/−

n= 8, p < 0.0001; Supplementary Fig. 2b, d). The initial upstroke
velocity of NKX2-5−/− cardiomyocytes was also slower than that
of NKX2-5eGFP/w cardiomyocytes (4.1 ± 0.5 V s−1 in NKX2-5eGFP/
w compared to 2.7 ± 0.2 V s−1 in NKX2-5−/− n= 8, p < 0.05;
Supplementary Fig. 2d). A further defect in the electrophysiology
of NKX2-5−/− cardiomyocytes was demonstrated by a blunted
response to the beta adrenoceptor agonist isoprenaline (Fig. 2g).
We also determined whether contractile capacity was altered in
NKX2-5−/− cardiomyocytes by using bioengineered cardiac
organoids25. These were generated by placing a single cell
suspension of day 15 differentiated cells into a collagen 1 matrix
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Fig. 1 NKX2-5 regulates cardiomyocyte differentiation. a Schematic representation of NKX2-5eGFP/w and NKX2-5−/− (NKX2-5 null) genotype. b
Immunofluorescent detection of NKX2-5, ACTN2 and GFP in NKX2-5eGFP/w and NKX2-5−/− cultures at day 14 of cardiac differentiation. Nuclei
counterstained with DAPI. Scale bar= 50 μM. c Bar graph quantifying GFP and ACTN2 expression in differentiating NKX2-5eGFP/w and NKX2-5−/−

cultures, as determined by flow cytometry (see Supplementary Fig. 1). Data represent mean ± SEM (n= 5). **p < 0.01 (Student’s t-test). d Q-PCR analysis
of NKX2-5eGFP/w and NKX2-5−/− cultures at day 14 of differentiation. NKX2-5 null cardiomyocytes show normal expression of characteristic cardiomyocyte
markers. Data represent mean ± SEM (n= 4). *** p < 0.001 (Student’s t-test). e, f Representative flow cytometry plots (e) and bar graph (f) of PDGFRα
expression in NKX2-5eGFP/w and NKX2-5−/− cultures at day 42 of differentiation. Numbers on plots are percentage of cells in quadrant. Data represent
mean ± SEM (n= 4). ***p < 0.001 (Student’s t-test). g, h Representative flow cytometry plot at day 14 of differentiation (g) and bar graph (h) of a time
course of VCAM1 expression in differentiating NKX2-5eGFP/w and NKX2-5−/− cultures. Numbers on plots are percentage of cells in quadrant. Data
represent mean ± SEM (n= 4). ***p < 0.001 (Student’s t-test)
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that promotes tissue formation around 2 elastic pillars (Supple-
mentary Fig. 2e, Supplementary Movie 2), a configuration that
enables the imposition and measurement of mechanical loading.
These cultures were allowed to mature for a further 13 days
before analysis. Cardiac organoids from NKX2-5−/− cells

generated significantly reduced contractile force (74 ± 8 μN n=
3) compared to NKX2-5eGFP/w cells (283 ± 34 μN n= 3) (Fig. 2h
and Supplementary Fig. 2f). Consistent with impaired bioengi-
neered muscle function the sarcomeres of NKX2-5 null
cardiomyocytes are disorganized (Fig. 2i and Supplementary

**

***

n.s.

**

***
n.s.

0

NKX2-5 eGFP/w
NKX2-5 eGFP/w

NKX2-5 –/–
NKX2-5 –/–

NKX2-5 eGFP/w
NKX2-5 eGFP/w

NKX2-5 –/– NKX2-5 eGFP/w

NKX2-5 –/–

NKX2-5 eGFP/w

NKX2-5 eGFP/w

NKX2-5 eGFP/w

NKX2-5 –/–

NKX2-5 –/–

NKX2-5 –/–

NKX2-5 –/–

a b

c

f hg

d

t (ms)R
el

at
iv

e 
flu

o 
in

te
ns

ity

C
or

re
la

tio
n

co
ef

fic
ie

nt
 (
R

2 )

40

0

0 100 200 300 400 500
t (ms)

F
ie

ld
 p

ot
en

tia
l (

m
V

)

0

400

300

200

100F
P

D
 (

m
s)

0

B
ea

t r
at

e
(b

ea
ts

 p
er

 m
in

)

Basal

e

A
m

pl
itu

de
ca

lc
iu

m
 (

ra
tio

)

B
ea

t r
at

e
(b

ea
ts

 p
er

 m
in

)

Basal 100 nM 
isoprenaline

t (ms)

10005000

C
on

tr
ac

tio
n

fo
rc

e 
(μ

N
)

i

1200

1000

800

600

400

1200

1100

1000

900

800
300200100 0 300200100

1.0

0.8

0.6

0.4

0.2

0.0

0.6

0.4

0.2

0

–40

–80

40

0

–40

–80

60

40

20

0

60

40

20

0

400

300

200

100

NKX2-5 eGFP/w NKX2-5 –/–

Fig. 2 Functional profiling demonstrates NKX2-5−/− cardiomyocytes have perturbed electrophysiology and reduced contractile force. a Representative
graphs showing co-ordination of calcium flux in day 17 cardiomyocyte monolayers derived from NKX2-5eGFP/w and NKX2-5−/− hESCs as detected by
Fluo4-AM. b Bar graph quantifying demonstrating analysis of correlation between calcium imaging signals as derived in a. Data represent mean ± SEM (n
= 6). ** p < 0.01 (Student’s t-test). c Bar graphs quantifying calcium amplitude (as a ratio of max to min calcium concentration) during contraction of
NKX2-5eGFP/w and NKX2-5−/− monolayers at day 14 of differentiation. Data represent mean ± SEM (n= 6). ** p < 0.01 (Student’s t-test). d Representative
traces of MEA extracellular field potentials of cardiomyocyte aggregates derived from NKX2-5eGFP/w and NKX2-5−/− cultures at day 14 of differentiation
(arrowheads represent start and end of field potential). e Bar graph demonstrating NKX2-5eGFP/w and NKX2-5−/− cardiomyocyte aggregates have similar
rates of contraction at day 14 of differentiation, as determined by MEA. Data represent mean ± SEM (n= 13). f Dot plots of field potential duration (FPD) of
cardiomyocyte aggregates, as derived in d. NKX2-5 null cardiomyocyte aggregates have a prolonged FPD, which is maintained until day 42 of differentiation
(Supplementary Fig. 2a). Bars represent mean ± SD (n= 20). *** p < 0.001 (Student’s t-test). g Bar graphs demonstrating NKX2-5 null cardiomyocyte
aggregates at day 14 of differentiation have an impaired chronotropic response to beta-adrenergic stimulation with isoprenaline, as determined by MEA.
Data represent mean ± SEM (n= 13). *** p < 0.001 (Student’s t-test). h Representative graph of contraction force generated during a single contraction by
NKX2-5eGFP/w and NKX2-5−/− bioengineered cardiac organoids (see Supplementary Fig. 2f for quantitation). i Transmission electron micrographs
show that NKX2-5 null cardiomyocytes have disorganized sarcomeres compared to NKX2-5eGFP/w cardiomyocytes (see also Supplementary Fig. 2g).
Scale bar= 1 μM

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03714-x

4 NATURE COMMUNICATIONS |  (2018) 9:1373 | DOI: 10.1038/s41467-018-03714-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Fig. 2g). Thus, NKX2-5 null cardiomyocytes displayed intrinsic
defects in force generation and action potential characteristics.

Defining the human NKX2-5 genetic network. To understand
how human NKX2-5 regulates myocardial differentiation, we
defined the NKX2-5 genetic network by combining gene
expression and chromatin immunoprecipitation sequencing
(ChIP-seq) analysis. Expression profiling of day 10 differentiated
cells from both genotypes, enriched for cardiomyocyte lineage
committed cells on the basis of high GFP expression18–20, iden-
tified 1174 differentially regulated genes (≥2 fold change, adj. p
value < 0.05; Fig. 3a, Supplementary Data 1). As expected from
the contractile nature of NKX2-5−/− cultures, the majority of

genes within a defined hPSC-CM signature26 were not differen-
tially expressed in NKX2-5−/− cardiomyocytes (63/99; Fig. 3a).
The 495 genes more abundant in NKX2-5eGFP/w cultures included
the known NKX2-5 target genes NPPA and IRX427. There was
reduced expression of a number of ventricular specific markers
including IRX4, HAND1 and MYL2 in NKX2-5 knockout cultures
(Fig. 3a, Supplementary Data 1), consistent with the predominant
ventricular-like cardiomyocytes generated in monolayer cardiac
differentiations28. Six hundred and seventy nine genes were more
highly transcribed in NKX2-5−/− cardiomyocytes implying that
NKX2-5 was required to repress these genes during differentia-
tion. These included known markers of the cardiac progenitor
cells, such as, ISL1, PDGFRA, BMP2 and FGF10 (Fig. 3a), that
were previously found to be upregulated in the hearts of Nkx2-5
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null mice7. Q-PCR demonstrated that the altered gene expression
profile of NKX2-5 null cardiomyocytes is maintained during
cardiac differentiation (Fig. 3b). Furthermore, expression of the
NKX2-5-dependant genes HEY2, IRX4, NPPA, MYL2 and
VCAM1 is reduced in H9 NKX2-5 knockout cardiomyocytes
(Supplementary Fig. 3a). In addition, transcripts of the progenitor
markers ISL1, FGF10 and BMP2 are upregulated in H9 NKX2-5
null cardiomyocytes (Supplementary Fig. 3a). Heterozygosity for
NKX2-5 did not alter IRX4, HEY2, NPPA or VCAM1 expression
(Supplementary Fig. 3b) consistent with the similar levels of
NKX2-5 protein observed (Supplementary Fig. 1f). Collectively,
these data provide molecular evidence supporting the hypothesis
that NKX2-5 is required for the progression of cardiomyocytes
into specialized ventricular phenotype, already implied by both
the failure to activate VCAM1 and the persistence of PDGFRα
cells in NKX2-5−/− cultures (Fig. 1e–h and Supplementary
Fig. 1l, m).

ChIP-seq detected NKX2-5 bound at 5704 sites across the
genome. Fidelity of the data set was supported by enrichment of
NKX2-5 binding at highly conserved elements upstream of NPPA
(Fig. 3c)29 and at genes involved in cardiac muscle development
and function (Fig. 3d). In addition, the NKX2-5 binding motif
(known as an NK2 element or NKE,) was overrepresented in the
sequences bound by NKX2-512,14 and binding motifs of other
cardiac transcription factor families (e.g., GATA, T-Box) were
found within NKX2-5 bound sequences (Supplementary Fig. 3c).

NKX2-5 binding sites displayed a bi-modal distribution relative
to transcriptional start sites, with most found >50 Kb from start
sites, suggesting that NKX2-5 does not often occupy proximal
promoter regions (Supplementary Fig. 3d). NKX2-5 was found at
the VCAM1 locus, which, when combined with the differential
expression of this myocardial commitment marker, suggests
VCAM1 may be a direct NKX2-5 regulatory target (Fig. 3a, e and
Supplementary Fig. 3e,f). Conversely, the absence of proximal
NKX2-5 binding at the PDGFRA locus suggests that any
regulatory relationship between NKX2-5 and PDGFRA is reliant
upon putative NKX2-5-bound enhancers located over 250 kb
from the locus (Supplementary Fig. 3e).

Intersection of NKX2-5 binding associated genes (closest gene,
GREAT database) with NKX2-5 dependent genes (495 activated
and 679 repressed genes) identified 544 potential direct
transcriptional targets of NKX2-5 (Fig. 3e and Supplementary
Data 1, 2). Gene ontology (GO) analysis of NKX2-5 bound gene
subsets identified GO Biological Process terms correlated with
NKX2-5 activated genes that were closely aligned with heart
development whilst the GO Molecular Function profile included
terms associated with gated channel activity (Fig. 3e and
Supplementary Data 3, 4). Further investigation of ion channel
and transporter genes identified a subset with altered expression
profiles in NKX2-5 null cells (Fig. 4a). Q-PCR during a time
course of differentiation (day 7 to 42) on a subset of genes
including ion channels (SCN5A, KCNH2b), cell surface markers
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(VCAM1, PDGFRA) and myofilament genes (MYL2, MYH11)
demonstrated that differential expression for these genes was
maintained throughout differentiation (Fig. 4b). SCN5A, required
for Nav1.5 channel activity and depolarization of hPSC-CMs30,
was expressed at a lower level in NKX2-5−/− cells, and NKX2-5
was bound at this locus. KCNH2b (HERG1b) is critical for cardiac

repolarization31 and was down-regulated in NKX2-5−/− cells,
whereas expression of the longer isoform, KCNH2a, was
unperturbed (Fig. 4b), suggesting that NKX2-5 may only directly
regulate the shorter 2b isoform32. In support of this notion,
NKX2-5 was found bound at a putative promoter region of
KCHN2b (Supplementary Fig. 4a), within an intron of the
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KCHN2a transcript. Altered ion channel and transporter gene
expression led us to examine expression of connexins, which are
important for conduction of electrical signals through gap
junctions33. GJA1 (Connexin 43) showed expected punctate
localization along the periphery of NKX2-5eGFP/w cells, a pattern
that was lost in NKX2-5 null cardiomyocytes (Fig. 4c). The failure
of GJA1 to be robustly incorporated into gap junctions may have
reflected the dramatically reduced level of GJA1 protein in NKX2-
5−/− cultures (Fig. 4d). We speculate that the combined effect of
improper gap junction formation and altered ion channel and
transporter gene expression was most likely responsible for the
asynchronous contractility observed in NKX2-5−/− cultures
(Fig. 2a).

As well as electrophysiological abnormalities, the NKX2-5 null
cardiac cultures had impaired contractile force (Fig. 2h and
Supplementary Fig. 2f). Profiling of myofibrillar components and
smooth muscle associated genes revealed that NKX2-5−/− cardiac
cells expressed higher levels of the smooth muscle genes CNN1,
MYH11, ACTA2, TAGLN, and CALD1 than NKX2-5eGFP/w

(Fig. 4e and Supplementary Fig. 4b). Furthermore, NKX2-5 was
bound at the MYH11 and TAGLN loci and at a series of other
smooth muscle proteins (Supplementary Data 2), suggesting
NKX2-5 normally represses these genes. Supporting this hypoth-
esis, MYH11 protein was found at higher levels in NKX2-5−/−

cardiomyocytes (Fig. 4f). Conversely, MYL2 transcription and
protein levels were reduced in NKX2-5−/− cardiomyocytes
(Figs. 3a and 4e, g), further underlining the requirement for
NKX2-5 for cardiomyogenesis. Together, these data suggest that
progression to a ventricular cardiac phenotype is blocked in
NKX2-5−/− cardiomyocytes and NKX2-5 is required to repress
the ancestral smooth muscle genetic program. Alternatively or
additionally, it also possible that in the absence of NKX2-5, heart
progenitor cells with cardiomyocyte and smooth muscle poten-
tial24,34 may preferentially adopt a smooth muscle fate.

Finally, NKX2-5 has a conserved role regulating the genetic
program of transient embryological structures such as the second
heart field, atrioventricular canal and outflow tract6. Whilst 2D
differentiation lacks the spatiotemporal signaling and patterning
driving cardiogenesis in the embryo, a number of important
developmental genes were nevertheless dysregulated in NKX2-5
−/− cultures. Expression of FGF10, ISL1 and MEF2C and the
atrioventricular canal markers SOX4, SOX9 and TWIST1 were
increased in NKX2-5−/− cardiomyocytes (Supplementary Fig. 4c,
d). Further, binding of NKX2-5 at the FGF10, ISL1, SOX4 and
TWIST1 loci (Supplementary Fig. 4e) suggested direct negative
regulation for these genes. In addition, BMP2, which is known to
potentiate second heart field expansion in Nkx2-5−/− mice7, was
expressed more highly in NKX2-5−/− cardiomyocytes (Fig. 3b
and Supplementary Fig. 4f). This data shows that both important
developmental genes and markers of specialized non-myocyte

lineages are dysregulated in NKX2-5 null cells and the presence of
NKX2-5 at these loci supports an important, conserved role for
human NKX2-5 in these developmental processes and cell
types7,35.

HEY2 mediates NKX2-5 activity. To determine the network of
transcription factors controlled by NKX2-5, we compared the
expression of all predicted human transcription factors36 between
NKX2-5eGFP/w and NKX2-5−/− cardiomyocytes (Fig. 5a).
Expression of most cardiac GRN members, including GATA4 and
TBX5, was not dependent on NKX2-5 (Fig. 3b). The most dif-
ferentially expressed NKX2-5-dependent transcription factors
were MYCN, PRDM16, HEY2 and the IRX1/2/4 cluster (Fig. 5a).
Each of these genes has proximal NKX2-5 binding sites (Fig. 5c, d
and Supplementary Data 2) and all are required for normal
ventricular development and function37–39. MYCN and IRX4
have been identified as NKX2-5-dependant genes in the
mouse27,40. Further, the IRX4 and HEY2 transcription factors are
also dysregulated in H9 NKX2-5eGFP/del cardiomyocytes (Sup-
plementary Fig 3a). Since the majority of cardiomyocytes
obtained in monolayer differentiations of wildtype hPSCs display
an early embryonic ventricular phenotype (by action potential
and gene expression signature) we focused on HEY2 and IRX4 as
they have known roles in murine ventricular myogenesis27,39,41–
47. Further, Hey2 is a downstream target of the Notch pathway,
which is known to be in important for ventricular muscle
development, and is enriched in the compact myocardial
layer9,48.

All members of the IRX1/2/4 cluster, but not the duplicated
IRX3/5/6 cluster, were differentially expressed between NKX2-
5eGFP/w and NKX2-5−/− cardiomyocytes (Supplementary Fig. 5a,
b). With the exception of slightly reduced levels of IRX3
expression in NKX2-5−/− cardiomyocytes, IRX3/5/6 cluster
transcription did not vary greatly between the two lines
(Supplementary Fig. 5a). Differential IRX4 expression was
observed throughout the course of cardiac differentiation (Fig. 5b)
and IRX4 protein levels were reduced in NKX2-5−/− cardiomyo-
cytes (Supplementary Fig. 5d). The IRX1/2/4 cluster is likely a
direct target of NKX2-5, as NKX2-5 is bound at multiple
locations across the genomic region (Fig. 5c). In addition, the
NKX2-5 binding sites are highly conserved between species,
indicating they likely mark functional enhancers regulating
cardiac expression of the IRX1/2/4 locus (Fig. 5c).

The HEY2 locus is flanked by four upstream (−410 kb, −380
kb, −210 kb, and −190 kb) and two downstream (+375 kb and
+370 kb) NKX2-5 binding sites (Fig. 5d). Although there are four
other genes in the vicinity, HEY2 is the only one within 5Mb that
is differentially expressed in the absence of NKX2-5 (Fig. 5e) and
is the only HES/HEY family member differentially expressed

Fig. 5 HEY2 is a key downstream transcriptional mediator of NKX2-5. a Dot plot representation of RNA-seq absolute gene expression (log2 RPKM values)
for FANTOM5 predicted transcription factors. Dotted line marks 2 fold differential expression level. b Heat map of gene expression in GFP+ cells isolated
from NKX2-5eGFP/w and NKX2-5−/− cultures at day 7, 10 or 14 of cardiac differentiation, as determined by Q-PCR. Displayed as mean log2 fold change
between the two genotypes at each time point (n= 4). c, d Schematics of NKX2-5 ChIP-seq data showing the IRX1/2/4 cluster (c) and HEY2 locus (d) with
regions bound by NKX2-5 highlighted. The IRX4 proximal NKX2-5 bound region is highly conserved. Inp.= input chromatin. e Differential expression of
genes 2.5 Mbp up or downstream of the HEY2 locus in d. This data shows HEY2 is the only differentially expressed gene in this chromosomal region. Red
dashed line marks 2 fold (adj. p value < 0.05) gene expression difference between genotypes. f Histograms of flow cytometry analysis of VCAM1 in
untreated (No treatment) or induced (+4-OHT) NKX2-5−/− GAPTrap (GT) lines. Both GT-NKX2-5::ER and GT-HEY::ER restore VCAM1 expression (n= 4).
g Gene expression profiling of genetic rescue via the modified GAPTrap loci, GT-NKX2-5::ER, GT-HEY::ER and GT-IRX4::ER, as determined by Q-PCR (n= 3).
* p < 0.05, ** p < 0.01, *** p < 0.001 (Student’s t-test). h Correlation coefficient between contractile areas improves when both NKX2-5 and HEY2 are
induced (n= 3, scored blind to genotype). ** p < 0.01, *** p < 0.001 (Student’s t-test). i Western blot showing restoration of GJA1 (connexin 43) levels by
HEY2 and that wildtype (HES3) and NKX2-5eGFP/w GJA1 levels are comparable. j Network model of NKX2-5 regulated genes and their potential roles in
regulating ventricular myogenesis, progenitor differentiation and smooth muscle differentiation. Representative genes with altered expression (yellow text
activated genes, blue repressed genes) in NKX2-5 null cultures are shown below each process
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between NKX2-5eGFP/w and NKX2-5−/− cardiomyocytes (Supple-
mentary Fig. 5c). In addition, HEY2 expression is dramatically
reduced in NKX2-5 null cultures throughout cardiac differentia-
tion (Fig. 5b) and HEY2 protein levels are reduced in NKX2-5−/−

compared to NKX2-5eGFP/w cardiomyocytes (Supplementary
Fig. 5e). Furthermore, NKX2-5, in collaboration with established
transcriptional co-factors GATA4 and TBX2049, is able to
transactivate both proximal 5′ (−190 kb) and 3′ (+379 kb)
putative enhancer elements in HEK 293 T cells (Supplementary
Fig. 5f). In some contexts Hey2 is induced by BMP and TGFβ
signaling15 and expression of components of both these pathways
is reduced in NKX2-5 null cardiomyocytes (Supplementary
Fig. 4f), which may lead to a decrease in HEY2. However,
HEY2 transcript levels were not reduced when differentiating
NKX2-5eGFP/w cardiomyocytes were exposed to the BMP
antagonist DHM1 (Supplementary Fig. 5g). Taken together these
data support the hypothesis that HEY2 is directly regulated by
NKX2-5.

In order to determine the role of HEY2 and IRX4 in the NKX2-
5 gene regulatory network we used the GAPTrap system (GT)50

to express NKX2-5, IRX4 and HEY2 fused to a mutated estrogen
receptor domain (ER) that permits temporal induction of protein
activity by the addition of the estrogen analog 4OHT (Supple-
mentary Fig. 5h, i and ref. 51). Using VCAM1, which marks
committed cardiomyocytes16,18,52 as a readout of phenotypic
rescue, we demonstrated that induction of NKX2-5 expression in
NKX2-5−/−;GT-NKX2-5::ER cells was permissive for continued
cardiac differentiation (Fig. 5f). Induction of IRX4 activity did not
restore the cardiomyogenic program in NKX2-5−/− cells, as
assayed by VCAM1 expression (Fig. 5f). However, GAPTrap
based expression of HEY2 restored VCAM1 expression to a level
similar to that observed in both NKX2-5eGFP/w and NKX2-5−/−;
GT-NKX2-5::ER control cultures (Fig. 5f and Supplementary
Fig. 5j). Q-PCR analysis of NPPA expression demonstrated that
both NKX2-5::ER and HEY2::ER fusion proteins retained
transcriptional activity. NPPA is positively regulated by NKX2-5
and negatively regulated by HEY2 in the developing mouse
heart29, a relationship reproduced in vitro when NKX2-5 and
HEY2 function were induced during the differentiation of NKX2-
5 null cells (Fig. 5g). Gene expression analysis also confirmed
partial restoration of VCAM1 mRNA levels by both NKX2-5 and
HEY2 in NKX2-5−/− cells, and repression of the smooth muscle
myofilament gene MYH11, which was strongly upregulated in
NKX2-5−/− cultures (Fig. 5g). However, HEY2::ER only rescued a
subset of the NKX2-5 dependent transcriptome, for example
HEY2::ER expression did not result in activation of MYL2 and
IRX4 (Fig. 5g). Finally, in both NKX2-5−/−;GT-NKX2-5::ER and
NKX2-5−/−;GT-HEY2::ER cultures contractile synchronicity was
restored to a similar level (Fig. 5h, Supplementary Movie 3) and
GJA1 protein levels were restored in HEY2::ER rescued cultures
to levels comparable to both NKX2-5eGFP/w and wildtype
cardiomyocytes (Fig. 5i). Thus, HEY2 is able to rescue important
aspects of the NKX2-5 null phenotype. Taken together these data
support the hypothesis that HEY2 is one of the critical mediators
of the NKX2-5-dependent transcriptional network that guides
cardiomyocyte differentiation (Fig. 5j).

Discussion
NKX2-5 is essential to establish the transcriptional program for
ventricular muscle development. HPSC-CMs derived from
NKX2-5−/− cells, failed to activate VCAM1 and inappropriately
maintained expression of the progenitor marker PDGFRA. In the
mouse, VCAM1 mediates ventricular myocardial development
through interactions with α−4-integrin presented on the epi-
cardium53,54. Furthermore, gene expression and genomic binding

profiling demonstrated dysregulation of the ventricular myogenic
program and key progenitor genes, with higher expression of
smooth muscle, second heart field and atrioventricular genes and
loss of normal ion channel gene expression in NKX2-5−/−

derived cardiomyocytes. These changes subsequently manifest as
reduced contractile force and asynchronous contraction of car-
diac sheets in the NKX2-5 mutant cells.

We identified MYCN, PRDM16, HEY2, and the IRX1/2/4
cluster as candidate transcription factors required for normal
ventricular development that might mediate NKX2-5 function,
and focused on the role of the IRX1/2/4 cluster and HEY2 gene as
downstream of NKX2-5. Despite its early expression in ven-
tricular myocardium39, enforced expression of IRX4 failed to
upregulate VCAM1 in differentiating NKX2-5−/− cells, and did
not normalize the asynchronous contractions patterns that were a
hallmark of the NKX2-5−/− cardiomyocytes. Conversely, induced
expression of HEY2 partially rescued the NKX2-5 phenotype,
including restoring GJA1 levels, without up regulating IRX4. Hey2
regulates ventricular myocardial development, in part by sup-
pressing the atrial gene expression program and has recently been
found to be more highly expressed in the compact myo-
cardium9,43,44,55. Hey2 knockout mice have severe ventricular
septal defects and cardiac valve malformations, which result in
neo-natal death56,57. Further, the Hey genes (Hey2, Hey1, and
HeyL) control atrioventricular canal formation and subsequent
valve formation and septation by regulating epithelial to
mesenchymal transition (reviewed in15). In humans, HEY2
mutations are associated with Brugada syndrome, a ventricular
arrhythmia, which can cause sudden death58. Our data suggest
that HEY2 is a key component of the NKX2-5 transcriptional
network. This finding is consistent with the overlapping pheno-
types of conduction system abnormalities in individuals with
pathogenic NKX2-5 and HEY2 mutations5,58,59.

Several lines of evidence suggest the NKX2-5-HEY2 regulatory
relationship is direct. First, HEY2 expression in cardiomyocytes is
dependent on NKX2-5. Second, while NKX2-5 is bound at DNA
elements some distance from the HEY2 translational start site,
HEY2 is the only gene within 5 Mbp that has altered expression in
NKX2-5 null cells. Third, NKX2-5, in the presence of known co-
factors GATA4 and TBX20, was able to transactivate two of these
HEY2 regulatory elements in a heterologous system. Further,
inhibition of the BMP signaling pathway does not alter HEY2
levels suggesting that in cardiomyocytes HEY2 expression is not
regulated by a BMP regulatory axis. It is likely that HEY2 reg-
ulation is multifactorial and complex. In this context, it is inter-
esting to note increased expression of NR2F2 (COUP-TFII), a
known repressor of HEY246, in NKX2-5 null cardiomyocytes.
Thus, HEY2 regulation by NKX2-5 may include an indirect
component through COUP-TF-dependent repression. It is clear
that HEY2 is an important NKX2-5-dependant factor for human
ventricular muscle differentiation and, based on findings in the
mouse, may drive compact myocardium development9. Further-
more, these findings suggest that the HEY2 and NKX2-5 down-
stream targets coordinate synchronicity of excitation/contraction
coupling which is necessary to drive heart function during early
human embryogenesis.

In summary, our study demonstrates the utility of hPSCs for the
molecular dissection of human cardiac development and sheds light
on the NKX2-5 dependent regulatory axis that drives cardiogenesis.
These results provide a framework for further analysis of the
function and interdependence of the network of NKX2-5 down-
stream transcription factors in early human cardiac development.

Methods
Genetic manipulation of hESC lines. The NKX2-5 locus was genetically modified
and correctly targeted clones identified by PCR and Southern blotting using
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standard protocols16. Modification of the GAPDH locus and identification of
correctly targeted clones was performed using established methods50. CRISPR/
Cas9 genome editing was used to delete the coding sequence of NKX2-5. Briefly,
synthetic oligonucleotides containing the desired NKX2-5 protospacer sequence (5′
CCATGTTCCCCAGCCCT and 5′ GACCGATCCCACCTCAAC) and sequence
overhangs compatible to the BbsI were annealed and the duplex cloned into the
BbsI site of the vector pSpCas9(BB)-2A-GFP vector (PX458; Addgene Plasmid
#48138)60. Subsequently, H9 cells61 in which one allele had been targeted with
sequences encoding eGFP, H9 NKX2-5eGFP/w16, were electroporated with the
plasmid, and GFP-expressing single cells were isolated by FACS after 2–5 days
using a BD Influx cell sorter62. Individual GFP-expressing clones were expanded
and screened by PCR (NKX2-5 Fwd 5′ TTGTGCTCAGCGCTACCTGCTGC and
NKX2-5 rev 5′ GGGGACAGCTAAGACACCAGG) to identify clones with mod-
ified alleles. The mutant alleles were confirmed by sequencing of the PCR products
and pluripotency of the H9 NKX2-5eGFP/del was confirmed by expression of
pluripotent stem cell markers (ECAD, SSEA-4, TRA160, CD9) and differentiation
to mesodermal and endodermal lineages. Genomic integrity of selected genetically
modified lines was assessed either using the Illumina HumanCytoSNP-12 v2.1
array at the Victorian Clinical Genetics Service, Royal Children’s Hospital (Mel-
bourne) or by karyotyping by the Cytogenetics Department at the Monash Medical
Centre with a total of 20 metaphase chromosome spreads examined for each line.
H9 cells were obtained from WiCell (WA09)61 and HES3 human embryonic stem
cells lines were isolated and characterized by Richards and colleagues63. Human
ESC work was approved by the Monash Medical Centre and Royal Children’s
Hospital Human Research Ethics Committees.

Cell culture and cardiac differentiation. All cell culture reagents purchased from
Thermo Fisher unless stated. HES3 and derivative NKX2-5 targeted cell lines were
cultured on 75 cm2 tissue culture flasks and passaged using TrypLE Select as
described previously16. To induce differentiation, hESCs were harvested using
TrypLE Select and seeded on Geltrex coated cell culture plates at 2.5 × 105 cells/cm2

in basal differentiation media consisting of RPMI (Thermo 61870), B27 minus
vitamin A (Thermo 12587) and 50 µg/ml ascorbic acid (Sigma), further supple-
mented with 10 µM CHIR99021 (Tocris Bioscience) and 80 ng/ml Activin A
(Peprotech). At 24 and 96 h following induction of differentiation, media was
changed to basal differentiation media supplemented with 5 µM IWR-1 (Sigma),
and from day 5, differentiating cultures were maintained in basal differentiation
media only.

Flow cytometry. Flow cytometry analysis and sorting of lives cells was performed
for GFP, VCAM1 (diluted 1:100, biotin conjugated Abcam ab7224) detected with
APC-Streptavidin conjugated secondary (1:100, Biolegend), and PDGFRA (BD
Biosciences, 556001) detected with PE/Cy7 conjugated secondary (Biolegend,
405315), as described previously16,18,64. Pluripotency markers used were ECAD
(ThermoFisher Scientific, MA1-10192) detected with APC conjugated secondary (1
in 100), EpCAM-PE (Biolegend, 324205, diluted 1:100), CD9-FITC (BD Bios-
ciences, 341646, diluted 1:100) and SSEA4-APC (Biolegend, 330418, diluted 1:100)
were detected as For intracellular flow cytometry, cells were harvested with TrypLE
Select, fixed in 4% paraformaldehyde for 15 min at room temperature, blocked and
permeablised in block buffer consisting of 1 × Perm/Wash Buffer (BD) and 4% goat
serum (Sigma) for 15 min at 4 °C. Cells were then incubated with ACTN2 antibody
(Sigma, A7811, diluted 1:100) for 1 h at 4 °C and then Alexa Fluor 647 conjugated
secondary (ThermoFisher Scientific, A-21235, diluted 1:1000) for 1 h at 4 °C.
Collection of flow cytometric data was performed using BD Fortessa™ analyser and
analyzed with FlowLogic software (Inivai Scientific). Cell sorting was done using
FACS Diva™ and BD Influx™ cell sorters (BD Biosciences).

Immunofluorescence. Immunofluorescence was performed on cells seeded onto
Geltrex coated optical tissue culture treated 96 well plates (Greiner 665090). Cells
were fixed in 4% PFA in PBS for 15 min, then blocked in block buffer consisting of
PBS, 1 × Perm/Wash Buffer (BD), 0.1 mg/ml human IgG (Sigma) and 4% goat
serum (Sigma) for 15 min at 4 °C. All antibodies were diluted in PBS with 1 ×
Perm/Wash Buffer for staining. Primary antibody staining was performed over-
night at 4 °C for NKX2-5 (Santa Cruz sc-14033, diluted 1:1000), ACTN2 (Sigma
A7811, diluted, 1:800), MYL2 (Protein Tech Group 10906-1-AP, 1:200), MYH11
(Dako, M0851, diluted 1:1000) and GJA1 (Abcam ab11370, 1:1000). Secondary
antibody staining was performed for 1 h at room temperature using anti-mouse
and anti-rabbit Alexa Fluor 568 and 647 conjugated antibodies (all ThermoFisher).
Following staining, plates were incubated with 1 µg/ml DAPI PBS for 1 min and
stored at 4 °C in PBS.

Quantitative PCR. Analysis of gene expression by quantitative PCR was per-
formed, as described previously16,64. Expression levels of transcripts were nor-
malized to the averaged expression of the housekeeping genes GAPDH and SRP72.
Taqman probes were used for all genes (ThermoFisher).

Calcium imaging. Differentiated cells (Day 10) were seeded onto Geltrex coated
optical tissue culture treated 96 well plates at 1.5 × 104 cells/cm2. Cells were ana-
lyzed 4-6 days post plating. Cells were loaded with Fluo-4-AM (5 μM, Molecular

Probes) 30 min prior to analysis. Intracellular calcium concentration ([Ca2+]i) was
measured by illuminating myocytes (at ×10 magnification) once per second with
light (488 nm) and emission recorded using the GFP filter set of a Nikon A1R
confocal microscope (Japan)65. Cells displaying oscillating fluorescence were
considered to be spontaneously active and changes in fluorescence intensity were
measured for 10 min to determine changes in [Ca2+]i.

For analysis of electrical conduction through cardiomyocyte cultures, cells were
seeded onto Geltrex coated 24 well plates at 1.25 × 105 cells/cm2 and were analyzed
using the calcium imaging method described. Images were collected at 8 frames
per second at ×4 magnification. Two regions (~500 μM2) separated by 1.3 mm were
selected and changes in [Ca2+]i measured over a 10 s period. Background
fluorescence was subtracted and changes in fluorescence intensity in the two
regions were plotted against each other (example shown in Fig. 2a). Regression
values were plotted for each pair of regions (GraphPad Prism v6) and the mean ±
SEM of these values calculated was used to determine the correlation between the
two regions as a surrogate measure of conduction efficiency.

Multi-electrode array. Differentiated cells were harvested using TrypLE Select and
aggregated by centrifuging cells (4 min at rcf 478) suspended in basal differentia-
tion media at 1.0 × 104 cells per well in low adherence U bottom 96 well plates. At
24 h post aggregation, aggregates were seeded onto Geltrex coated 6 well micro-
electrode arrays (Multi Channel Systems). At 24-48 h post seeding, basal differ-
entiation media was exchanged and recordings made following equilibration.
Adrenergic responses were analyzed with isoproterenol hydrochloride (Sigma,
I6504) dissolved in H2O. Data was recorded and analyzed using MC Rack software
(Multi Channel Systems). Field potential duration measurements were corrected
using Fridericia’s repolarisation correction formula (QTcF).

Whole-cell patch clamp. Differentiated cells were seeded onto Geltrex coated glass
bottom 35 mm culture dishes as single cells (World Precision Instruments).
Spontaneous action potentials (APs) were recorded from 4-6 days post plating
using a HEKA EPC10 Double patch clamp amplifier at room temperature (HEKA
Elektronik, Germany). Borosilicate pipettes (Harvard Instruments) with an input
resistance from 1-3.5MΩ were filled with 117 mM KCl, 10 mM NaCl, 2 mMMgCl2,
1 mM CaCl2, 11 mM EGTA, 2 mM Na-ATP, and 11 mM HEPES. The pH was
adjusted to pH 7.2 with KOH. Cells were bathed in a solution containing 135 mM
NaCl, 5 mM KCl, 5 mM HEPES, 10 mM glucose, 1.2 mM MgCl2, and 1.25 mM
CaCl2. The pH was adjusted to 7.4 with NaOH.

Cells were patch clamped in whole-cell voltage-clamp mode. Slow and fast-
capacitance were compensated for using Patchmaster data acquisition software
(HEKA) and signals were filtered with a 10 kHz low-pass Bessel filter. The amplifier
was then switched to current-clamp mode to measure the voltage wave-form.
Spontaneous action potential firing was recorded without current injection. Data
analysis was performed using custom scripts written with MATLAB (Mathworks)
(script provided in Supplementary Methods).

Cardiac organoids. Cardiac organoid formation and growth was adapted from ref.
25. Briefly, initial cardiac differentiation was induced in monolayers using RPMI-
B27 medium containing 5 ng/mL BMP-4 (RnD Systems), 9 ng/mL Activin A (RnD
Systems), 5 ng/mL FGF-2 (RnD Systems), and 1 μM CHIR99021 (Stem Cell
Technologies) with daily medium exchange for 3 days. Subsequently, cultures were
maintained in RPMI-B27 supplemented with 5 μM IWP-4 (Stem Cell Technolo-
gies) for 3 days to guide specification into cardiomyocyte and stromal cell lineages.
Cultures were maintained in RPMI-B27 with medium exchange every 2 days for a
further 9 days. On Day 15 single cell suspensions were generated by digestion in
collagenase type I (Sigma) in 20% Foetal Bovine Serum in phosphate buffered
saline for 60 min at 37 °C followed by 0.25% trypsin-EDTA for 10 min and fil-
tration through a 100-μmmesh cell strainer (BD Biosciences). For cardiac organoid
formation 5 × 104 day 15 cells in CTRL media (α-MEM GlutaMAX, 10% Foetal
Bovine Serum, 200 μM L-ascorbic acid 2 phosphate sesquimagnesium salt hydrate,
and 1% Penicillin/Streptomycin) were mixed with Matrigel (9%) and collagen I
(2.6 mg/ml; Devro) in a total volume of 3.5 μl. Subsequently, the cell/Matrigel/
collagen I mixture was added to Heart-Dyno constructs (below) and centrifuged.
The Heart-Dyno was then centrifuged at 100 × g for 10 s to ensure the hCO form
halfway up the posts. The mixture was then gelled at 37 °C for 30 min prior to the
addition of CTRL medium to cover the tissues (150 μl/hCO). The Heart-Dyno
design facilitates the self-formation of tissues around in-built PDMS exercise poles
(designed to deform •0.07 μm/μN). The medium was changed every 2–3 days (150
μl/hCO).

Heart-Dyno’s constructs were manufactured using SU-8 photolithography and
PDMS molding25. Briefly, microfabricated cantilever array designs were drafted
with DraftSight (Dassault Systems) and photomasks of the design were then
plotted with an MIVA photoplotter onto 7-inch HY2 glass plates (Konica Minolta)
followed by SU-8 photolithography on 6-inch silicon wafer substrates (•700 µm).
Silicon wafers were cleaned and degassed at 150 °C for 30 min. Subsequently, SU-8
2150 photoresist (Microchem) was spin coated to build the SU-8 to the required
thickness and the final wafer exposed to UV (1,082 mJ/cm2). The Heart-Dyno was
molded by soft lithography with PDMS (Sylgard 184; Dow Corning; mixed in 10:1
ratio of monomer:catalyst), with curing at 65 °C for 35 min. The molds were placed
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into 96-well plates, sterilized with 70% ethanol and UV light, washed with PBS, and
coated with 3% BSA (Sigma, A2153).

Transmission electron microscopy. Cardiomyocytes were sorted by flow cyto-
metry based on the expression of eGFP and VCAM1 at day 10 of differentiation
and replated onto Nunc Thermanox 13 mm coverslips (Thermo Scientific 174950)
coasted in Geltrex (Invitrogen A1413202). The cardiomyocytes were cultured until
day 21 in RPMI1640 with B27 supplement and then fixed in a 1.5% Glutar-
aldehyde, 1.5% Paraformaldehyde mix in PBS. Transmission electron microscopy
sample processing and imaging was performed as a fee for service at the Bio21
advance microscopy facility. A minimum of 20 images per cell line were captured
on a Tecnai F30 TEM instrument. Image analysis was perform blinded to genotype.

RNAseq. GFP positive cells were FACS sorted on day 10 of differentiation and
snap frozen. Cells were subsequently thawed and collected in PBS to generate 3
pools of >1.0 × 106 cells for both NKX2-5eGFP/w and NKX2-5−/− cell lines. RNA
was extracted using a High Pure RNA Isolation kit (Roche) and 1 µg was analyzed
for RNA integrity and submitted for sequencing using the Illumina platform
(Australian Genomic Research Facility). Tophat2 aligner was used to map the 100
bp single end reads to the human reference genome (hg19). The uniquely mapped
reads were summarized across genes with featureCounts (Rsubread v1.20.6)66

using RefSeq gene annotation (hg19). Lowly expressed genes were filtered out (less
than one count per million in fewer than three samples), leaving 14,458 genes for
further analysis. The data was TMM normalized, voom transformed67, and dif-
ferential expression assessed using empirical Bayes moderated t-tests from the R
Bioconductor limma package68. Design matrix included factor for day of cell
sorting. Differential gene expression was determined by fold change <2 and with
adjusted p values > 0.1 (moderated t-test). Data have been deposited on the GEO
database under accession code GSE89443 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE89443).

The IUPHAR/BPS Guide to PHARMACOLOGY database (http://www.
guidetopharmacology.org) was used to identify ion channel and transporter
genes69. Myofibrillar components and smooth muscle associated gene lists were
taken from70. GO analysis was performed using ToppGene suite (https://toppgene.
cchmc.org/).

ChIPseq. Differentiated cells were fixed on day 10 for ChIPseq studies. Cells were
PBS washed and fixed for 10 min at room temperature with shaking in fresh
methanol free formaldehyde (ThermoFisher) diluted to 1% in cold PBS. For-
maldehyde was quenched with glycine, cells PBS washed and snap frozen. For
ChIP, protease inhibitor cocktail was used in all buffers (Roche). Aliquots of ~5 ×
106 cells were re-suspended in lysis buffer (1% SDS, 10 mM EDTA, 2M Tris–HCl)
and incubated on ice for 20 min. Cells were sonicated using a focused ultra-
sonicator (Covaris) using peak voltage 80W and duty cycle 3% for time 25 min.
Sonicated samples were diluted in dilution buffer (0.01% SDS, 1.1% Triton X-100,
1.2 mM EDTA, 16.7 mM Tris-HCl, 165 mM NaCl) and pre cleared for 4 h at 4 °C
with blocked Protein A conjugated magnetic beads (ThermoFisher). Beads were
removed and supernatant incubated overnight at 4 °C in dilution buffer with 5 µg
of one of two NKX2-5 antibodies validated by immunohistchemistry (Abcam
ab35842, Santa Cruz sc-14033) or IgG as a control (Sigma). Blocked beads were
added to the supernatants, and incubated for 4 h at 4 °C. Beads were washed in
dilution buffer, low salt wash buffer (0.5% sodium deoxycholate, 0.1% SDS, 1% NP-
40, 1 mM EDTA, 50 mM Tris-HCl, 150 mM NaCl), high salt wash buffer (as low
salt, 500 mM NaCl) and TE. Bound protein:DNA complexes were eluted (1% SDS,
100 mM NaHCO3) and cross linking reversed by incubating overnight at 65 °C in a
final concentration of 0.3 M NaCl. DNA was purified using a PCR purification kit
(QIAGEN). Samples were quantified, and if required, pooled and vacuum con-
centrated. Sequencing was performed using Illumina chemistry at the Australian
Genomic Research Facility. All sequenced files were trimmed for adapters using
program trimmomatic. Bowtie2 (v2.10) using default parameters was used to map
the 100 bp single end reads to the human reference genome (hg19). The Macs1.4
(version 1.4.2) program was used to call ChIP peaks from three independent
samples (two prepared using Abcam antidbody, one using Santa Cruz antibody)
using an input sample (IgG antibody) as a control. To ensure only high quality
reproducible peaks were used for further analysis, only the peaks (or part of the
peaks) that were detected by Macs1.4 (individual peaks p values < 1e-5) in all three
samples were used for downstream analysis. Meme chip (http://meme.nbcr.net/
meme/cgi-bin/meme-chip.cgi) was used to identify potential motifs within the
called chip peaks. The Genomic Regions Enrichment of Annotation Tool
(GREAT), version3.0.0, was used to predict the function of cis-regulatory regions.
Parameters used; Human hg19 genome, whole genome as background. Default
gene –region association rules were used. Data have been deposited in the GEO
database under accession code GSE89457 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE89457).

GAPTrap rescue experiments. We utilized the GAPTrap strategy to engineer cell
lines expressing transcription factors of interest from the GAPDH locus, as
described previously54. GAPTrap targeting vectors were modified such that
sequences encoding NKX2-5, HEY2 and IRX4, all fused in-frame to the ligand-
binding domain of the human Estrogen Receptor[50], were placed immediately 3′

of the T2A peptide cleavage signal (Supplementary Fig. 4). All cloning was per-
formed using the InFusion HD cloning system (TaKara, 638910). To induce
nuclear translocation of the NKX2-5::ER, HEY2::ER and IRX4::ER fusion proteins
the ligand 4-Hydroxytamoxifen (Sigma, T176) was added to cell culture media at
final concentration of 0.5 μM. For rescue experiments, 4-Hydroxytamoxifen (4-
OHT) was added from differentiation day 5 onwards.

Western blots. Proteins were extracted from differentiated hESCs-cardiomyocytes
(day 14) by incubating cultures in ice cold RIPA buffer supplemented with pro-
teinase inhibitors (Roche) for 10 min and scrapping the cells and collecting in
Eppendorf tubes. The insoluble fraction was removed by centrifugation and protein
extracts were snap frozen in liquid nitrogen. 50 μg of whole cell protein extract was
separated on NuPAGE Novex 4–12% Bis-Tris Midi Protein Gels (ThermoFisher).
Proteins were transferred to Amersham Hybond-P PVDF Membrane according
manufactures protocols (RPN2020F, GE Healthcare, Life Sciences). Membranes
were blocked in 5% BSA in Tris-Buffered Saline with 0.01% Tween 20 (TBS-T). To
detect antigens the membranes were incubated for 1 h in primary antibodies
(NKX2-5 (Santa Cruz sc-14033 or Abcam ab35842, diluted 1:100; GAPDH Cell
Signalling, 51745 and GJA1 (Abcam ab11370, 1:100)) in 1% BSA in TBS-T, then
washed 3 times in TBS-T followed by a 1 h incubation with horse radish peroxidase
conjugated secondary antibody (Jackson Immuno Research labs., 115-035-003,
1:1000) an then washed 3 times in TBS-T. Proteins were detected with the
Amersham ECL Western blotting detection kit according to manufactures protocol
(GE Healthcare, RPN2108). For fluorescent based Westerns antibodies were
detected with an appropriate secondary antibody conjugated to Alexa-647 (goat-
anti mouse A-21235; goat-anti rabbit A-21245, ThermoFisher) diluted 1:1000 in
TBS-T and imaged on a ImageQuant LAS 500 (GE Healthcare).

All uncropped Western blots can be found in Supplementary Fig. 6.

Luciferase reporter assays. The NKX2-5 expression vector was purchased from
GenScript (pcDNA3.1+/C-(K)-DYK-NKX2-5, OHu19766D) and expression
clones for Tbx20 and Gata4 have been previously described49. Luciferase reporters
were generated by placing the 5′ (DNA sequence—chr6:126,140,479-126,141,036)
and 3′ (DNA sequence—chr6: 126,604,942-126,605,309) HEY2 putative enhancer
elements in the pGL3-Promoter vector (Promega, USA, E1761). For transfection
assays HEK 293 T cells were plated at 0.5 × 105 cells per well in 48 well plates and
placed in a 10% CO2 incubator at 37 °C. After 24 h the cells were transfected using
the Viromer Yellow transfection reagent (Lipocalix, Germany, VY-01LB-00) mixed
with the plasmids in the following amounts: 50 ng Enhancer reporter, 5 ng Renilla
reporter (pRL-CMV), 50 ng each of Gata4 and Tbx20 expression vectors and 200
ng of pcDNA3.1+/C-(K)-DYK-NKX2-5. Transcriptional activity was determined
using Dual Luciferase Reporter Assay kit (Promega, USA, E1910) and controlled
for transfection efficiency by determining Renilla luciferase activity. Transfections
were performed in triplicate and statistical analysis performed using one-way
Anova (GraphPad Prism Software). Data are presented as fold activity relative to
the corresponding reporter when co-transfected with empty expression plasmids.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files or the
GEO database https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89443,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89457 or from the cor-
responding author (D.A.E.) upon reasonable request.
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