126 research outputs found

    Thermal boundary resistance from transient nanocalorimetry: a multiscale modeling approach

    Get PDF
    The Thermal Boundary Resistance at the interface between a nanosized Al film and an Al_{2}O_{3} substrate is investigated at an atomistic level. A room temperature value of 1.4 m^{2}K/GW is found. The thermal dynamics occurring in time-resolved thermo-reflectance experiments is then modelled via macro-physics equations upon insertion of the materials parameters obtained from atomistic simulations. Electrons and phonons non-equilibrium and spatio-temporal temperatures inhomo- geneities are found to persist up to the nanosecond time scale. These results question the validity of the commonly adopted lumped thermal capacitance model in interpreting transient nanocalorimetry experiments. The strategy adopted in the literature to extract the Thermal Boundary Resistance from transient reflectivity traces is revised at the light of the present findings. The results are of relevance beyond the specific system, the physical picture being general and readily extendable to other heterojunctions.Comment: 12 pages, 8 figure

    Boron-loaded liposomes in the treatment of hepatic metastases: preliminary investigation by autoradiography analysis.

    Get PDF
    Boronophenylalanine (BPA)-loaded conventional and stabilized liposomes were prepared by the reversed phase evaporation method to treat liver metastases by boron neutron capture therapy. Conventional vesicles were composed of phosphatidylcholine and cholesterol, molar ratio 1:1. To obtain stealth liposomes, GM1 or PEG were included in the lipidic bilayer at a concentration of 6.67 or 5 mol%, respectively. Large unilamellar vesicles were formulated encapsulating BPA in the liposome aqueous compartment as a complex with fructose; BPA free base also was embedded into the lipidic bilayer. In vivo experiments were carried out after intravenous injection of liposome suspensions in BD-IX strain rats in which liver metastases had been induced. Alpha particle spectroscopy associated with histological analysis was performed to visualize boron spatial distribution in liver. Simultaneously, tissue boron concentrations were determined using inductively coupled plasma-mass spectroscopy. Results showed that PEG-modified liposomes accumulated boron in therapeutic concentrations (30 micrograms boron/g tissue) in metastatic tissue. The PEG-liposomes could be further explored in enhancing boron delivery to tumor cells

    Non-thermal light-assisted resistance collapse in a V2_2O3_3-based Mott-insulator device

    Full text link
    The insulator-to-metal transition in Mott insulators is the key mechanism for a novel class of electronic devices, belonging to the Mottronics family. Intense research efforts are currently devoted to the development of specific control protocols, usually based on the application of voltage, strain, pressure and light excitation. The ultimate goal is to achieve the complete control of the electronic phase transformation, with dramatic impact on the performance, for example, of resistive switching devices. Here, we investigate the simultaneous effect of external voltage and excitation by ultrashort light pulses on a single Mottronic device based on a V2_2O3_3 epitaxial thin film. The experimental results, supported by finite-element simulations of the thermal problem, demonstrate that the combination of light excitation and external electrical bias drives a volatile resistivity drop which goes beyond the combined effect of laser and Joule heating. Our results impact on the development of protocols for the non-thermal control of the resistive switching transition in correlated materials

    Alternation between dietary protein depletion and normal feeding cause liver damage in mouse

    Get PDF
    The effect of frequent protein malnutrition on liver function has not been intensively examined. Thus, the effects of alternating 5 days of a protein and amino acid-free diet followed by 5 days of a complete diet repeated three times (3 PFD-CD) on female mouse liver were examined. The expression of carbonic anhydrase III (CAIII), fatty acid synthase (FAS), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glutathione S-transferase P1 (GSTP1) in liver were assessed by proteomics, reverse transcriptase-polymerase chain reaction and Northern blotting. The activities of liver GSTs, glutathione reductase (GR) and catalase (CAT), as well as serum glutamic-oxaloacetic transaminase (SGOT) and glutamic-pyruvic transaminase (SGPT) were also tested. Additionally, oxidative damage was examined by measuring of protein carbonylation and lipid peroxidation. Liver histology was examined by light and electron microscopy. Compared with control mice, 3 PFD-CD increased the content of FAS protein (+90%) and FAS mRNA (+30%), while the levels of CAIII and CAIII mRNAs were decreased (-48% and -64%, respectively). In addition, 3 PFD-CD did not significantly change the content of GSTP1 but produced an increase in its mRNA level (+20%), while it decreased the activities of both CAT (-66%) and GSTs (-26%). After 3 PFD-CD, liver protein carbonylation and lipid peroxidation were increased by +55% and +95%, respectively. In serum, 3 PFD-CD increased the activities of both SGOT (+30%) and SGPT (+61%). In addition, 3 PFD-CD showed a histological pattern characteristic of hepatic damage. All together, these data suggest that frequent dietary amino acid deprivation causes hepatic metabolic and ultrastructural changes in a fashion similar to precancerous or cancerous conditions.Fil: Caballero, Veronica Jorgelina. Universidad Nacional de Mar del Plata; ArgentinaFil: Mendieta, Julieta Renee. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Giudici, Ana Marcela. Universidad Nacional de Mar del Plata; ArgentinaFil: Crupkin, Andrea Carina. Universidad Nacional de Mar del Plata; ArgentinaFil: Barbeito, Claudio Gustavo. Universidad Nacional de La Plata; ArgentinaFil: Ronchi, Virginia Paola. Universidad Nacional de Mar del Plata; ArgentinaFil: Chisari, Andrea Nancy. Universidad Nacional de Mar del Plata; ArgentinaFil: Conde, Ruben Danilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentin

    Alpha-synuclein fibrils recruit TBK1 and OPTN to lysosomal damage sites and induce autophagy in microglial cells

    Get PDF
    Autophagic dysfunction and protein aggregation have been linked to several neurodegenerative disorders, but the exact mechanisms and causal connections are not clear and most previous work was done in neurons and not in microglial cells. Here, we report that exogenous fibrillary, but not monomeric, alpha-synuclein (AS, also known as SNCA) induces autophagy in microglial cells. We extensively studied the dynamics of this response using both live-cell imaging and correlative light-electron microscopy (CLEM), and found that it correlates with lysosomal damage and is characterised by the recruitment of the selective autophagy-associated proteins TANK-binding kinase 1 (TBK1) and optineurin (OPTN) to ubiquitylated lysosomes. In addition, we observed that LC3 (MAP1LC3B) recruitment to damaged lysosomes was dependent on TBK1 activity. In these fibrillar AS-treated cells, autophagy inhibition impairs mitochondrial function and leads to microglial cell death. Our results suggest that microglial autophagy is induced in response to lysosomal damage caused by persistent accumulation of AS fibrils. Importantly, triggering of the autophagic response appears to be an attempt at lysosomal quality control and not for engulfment of fibrillar AS.Fil: Bussi, Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Peralta Ramos, Javier María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Arroyo, Daniela Soledad. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Gallea, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Ronchi, Paolo. European Molecular Biology Laboratory; AlemaniaFil: Kolovou, Androniki. European Molecular Biology Laboratory; AlemaniaFil: Wang, Ji M.. National Cancer Institute at Frederick; Estados UnidosFil: Florey, Oliver. Babraham Institute; Reino UnidoFil: Celej, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Schwab, Yannick. European Molecular Biology Laboratory; AlemaniaFil: Ktistakis, Nicholas. Babraham Institute; Reino UnidoFil: Iribarren, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentina. Universidad Nacional de Córdoba; Argentin

    POTENCIAL DE LIXIVIAÇÃO DE HERBICIDAS EM SOLOS AGRÍCOLAS NA REGIÃO DO ALTO PARANAÍBA (MG)

    Get PDF
    Objetivou-se neste trabalho estimar o potencial de lixiviação dos herbicidas utilizados nas áreas de agricultura intensiva da região do Alto Paranaíba (MG). Utilizou-se o Fator de Atenuação (AF) para estimar as frações perdidas por lixiviação nos primeiros80 cm do perfil de solo. As avaliações foram realizadas com base nas propriedades físico-químicas dos ingredientes ativos obtidas de várias fontes de dados, combinadas com os atributos de Latossolo Vermelho distroférrico. As amostras de solo, coletadas em três pontos representativos no município de Rio Paranaíba (MG), foram submetidas às determinações de teor de carbono orgânico, densidade do solo e capacidade de campo. Utilizou-se o software ARAquá como ferramenta auxiliar nos cálculos. Os herbicidas diurom, linurom, alacloro, trifluralina, fluazifope-p-butílico, paraquate, glifosato, lactofem e oxifluorfem apresentaram, no solo estudado, mobilidade muito baixa. Evidenciaram maior potencial de lixiviação, na seguinte ordem, os produtos: imazetapir, fomesafem, metribuzim, nicossulfurom, atrazina, ametrina, clorimurom-etílico e bentazona. Essas moléculas apresentam risco de contaminação de águas subterrâneas e devem ser consideradas em etapas posteriores de avaliação de impacto ao ambiente

    Ultrafast orbital manipulation and Mott physics in multi-band correlated materials

    Get PDF
    Multiorbital correlated materials are often on the verge of multiple electronic phases (metallic, insulating, superconducting, charge and orbitally ordered), which can be explored and controlled by small changes of the external parameters. The use of ultrashort light pulses as a mean to transiently modify the band population is leading to fundamentally new results. In this paper we will review recent advances in the field and we will discuss the possibility of manipulating the orbital polarization in correlated multi-band solid state systems. This technique can provide new understanding of the ground state properties of many interesting classes of quantum materials and offers a new tool to induce transient emergent properties with no counterpart at equilibrium. We will address: the discovery of high-energy Mottness in superconducting copper oxides and its impact on our understanding of the cuprate phase diagram; the instability of the Mott insulating phase in photoexcited vanadium oxides; the manipulation of orbital-selective correlations in iron-based superconductors; the pumping of local electronic excitons and the consequent transient effective quasiparticle cooling in alkali-doped fullerides. Finally, we will discuss a novel route to manipulate the orbital polarization in a a k-resolved fashion

    Nanoscale self-organization and metastable non-thermal metallicity in Mott insulators

    Get PDF
    Mott transitions in real materials are first order and almost always associated with lattice distortions, both features promoting the emergence of nanotextured phases. This nanoscale self-organization creates spatially inhomogeneous regions, which can host and protect tran- sient non-thermal electronic and lattice states triggered by light excitation. Here, we combine time-resolved X-ray microscopy with a Landau-Ginzburg functional approach for calculating the strain and electronic real-space configurations. We investigate V2O3, the archetypal Mott insulator in which nanoscale self-organization already exists in the low-temperature monoclinic phase and strongly affects the transition towards the high-temperature corundum metallic phase. Our joint experimental-theoretical approach uncovers a remarkable out-of- equilibrium phenomenon: the photo-induced stabilisation of the long sought monoclinic metal phase, which is absent at equilibrium and in homogeneous materials, but emerges as a metastable state solely when light excitation is combined with the underlying nanotexture of the monoclinic lattice
    corecore