88 research outputs found

    Bioengineered Surfaces for Real-Time Label-Free Detection of Cancer Cells

    Get PDF
    Biosensing technology is an advancing field that benefits from the properties of biological processes combined to functional materials. Recently, biosensors have emerged as essential tools in biomedical applications, offering advantages over conventional clinical techniques for diagnosis and therapy. Optical biosensors provide fast, selective, direct, and cost-effective analyses allowing label-free and real-time tests. They have also shown exceptional potential for integration in lab-on-a-chip (LOC) devices. The major challenge in the biosensor field is to achieve a fully operative LOC platform that can be used in any place at any time. The choice of an appropriate strategy to immobilize the biological element on the sensor surface becomes the key factor to obtain an applicable analytical tool. In this chapter, after a brief description of the main biofunctionalization procedures on silicon devices, two silicon-based chips that present an (i) IgG antibody or (ii) an Id-peptide as molecular probe, directed against the B-cell receptor of lymphoma cancer cells, will be presented. From a comparison in detecting cells, the Id-peptide device was able to detect lymphoma cells also at low cell concentrations (8.5 × 10−3 cells/μm2) and in the presence of a large amount of non-specific cells. This recognition strategy could represent a proof-of-concept for an innovative tool for the targeting of patient-specific neoplastic B cells during the minimal residual disease; in addition, it represents an encouraging starting point for the construction of a lab-on-a-chip system for the specific recognition of neoplastic cells in biological fluids enabling the follow-up of the changes of cancer cells number in patients, highly demanded for therapy monitoring applications

    Histologic analysis of idiopathic pulmonary fibrosis by morphometric and fractal analysis

    Get PDF
    : Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disorder, ultimately leading to respiratory failure and death. Despite great research advances in understanding the mechanisms underlying the disease, its diagnosis, and its treatment, IPF still remains idiopathic without known biological or histological markers able to predict disease progression or response to treatment. The histologic hallmark of IPF is usual interstitial pneumonia (UIP), with its intricate architectural distortion and temporal inhomogeneity. We hypothesize that normal lung alveolar architecture can be compared to fractals, such as the Pythagoras tree with its fractal dimension (Df), and every pathological insult, distorting the normal lung structure, could result in Df variations. In this study, we aimed to assess the UIP histologic fractal dimension in relationship to other morphometric parameters in newly diagnosed IPF patients and its possible role in the prognostic stratification of the disease. Clinical data and lung tissue specimens were obtained from twelve patients with IPF, twelve patients with non-specific interstitial pneumonia (NSIP), and age-matched "healthy" control lung tissue from patients undergoing lung surgery for other causes. Histology and histomorphometry were performed to evaluate Df and lacunarity measures, using the box counting method on the FracLac ImageJ plugin. The results showed that Df was significantly higher in IPF patients compared to controls and fibrotic NSIP patients, indicating greater architectural distortion in IPF. Additionally, high Df values were associated with higher fibroblastic foci density and worse prognostic outcomes in IPF, suggesting that Df may serve as a potential novel prognostic marker for IPF. The scalability of Df measurements was demonstrated through repeated measurements on smaller portions from the same surgical biopsies, which were selected to mimic a cryobiopsy. Our study provides further evidence to support the use of fractal morphometry as a tool for quantifying and determining lung tissue remodeling in IPF, and we demonstrated a significant correlation between histological and radiological Df in UIP pattern, as well as a significant association between Df and FF density. Furthermore, our study demonstrates the scalability and self-similarity of Df measurements across different biopsy types, including surgical and smaller specimens

    Hsa-miR-210-3p expression in breast cancer and its putative association with worse outcome in patients treated with Docetaxel

    Get PDF
    MicroRNA-210-3p is the most prominent hypoxia regulated microRNA, and it has been found significantly overexpressed in different human cancers. We performed the expression analysis of miR-210-3p in a retrospective cohort of breast cancer patients with a median follow-up of 76 months (n = 283). An association between higher levels of miR-210-3p and risk of disease progression (HR: 2.13, 95%CI: 1.33-3.39, P = 0.002) was found in the subgroup of patients treated with Epirubicin and Cyclophosphamide followed by Docetaxel. Moreover, a cut off value of 20.966 established by ROC curve analyses allowed to discriminate patients who developed distant metastases with an accuracy of 85% at 3- (AUC: 0.870, 95%CI: 0.690-1.000) and 83% at 5-years follow up (AUC: 0.832, 95%CI: 0.656-1.000). Whereas the accuracy in discriminating patients who died for the disease was of 79.6% at both 5- (AUC: 0.804, 95%CI: 0.517-1.000) and 10-years (AUC: 0.804. 95%CI: 0.517-1.000) follow-up. In silico analysis of miR-210-3p and Docetaxel targets provided evidence for a putative molecular cross-talk involving microtubule regulation, drug efflux metabolism and oxidative stress response. Overall, our data point to the miR-210-3p involvement in the response to therapeutic regimens including Docetaxel in sequential therapy with anthracyclines, suggesting it may represent a predictive biomarker in breast cancer patients

    Combined analysis of miR-200 family and its significance for breast cancer

    Get PDF
    While the molecular functions of miR-200 family have been deeply investigated, a role for these miRNAs as breast cancer biomarkers remains largely unexplored. In the attempt to clarify this, we profiled the miR-200 family members expression in a large cohort of breast cancer cases with a long follow-up (H-CSS cohort) and in TCGA-BRCA cohort. Overall, miR-200 family was found upregulated in breast tumors with respect to normal breast tissues while downregulated in more aggressive breast cancer molecular subtypes (i.e. Luminal B, HER2 and triple negative), consistently with their function as repressors of the epithelial-to-mesenchymal transition (EMT). In particular miR-141-3p was found differentially expressed in breast cancer molecular subtypes in both H-CSS and TCGA-BRCA cohorts, and the combined analysis of all miR-200 family members demonstrated a slight predictive accuracy on H-CSS cancer specific survival at 12 years (survival c-statistic: 0.646; 95%CI 0.538-0.754)

    Hsa-miR155-5p up-regulation in Breast Cancer and its relevance for treatment with Poly [ADP-ribose] polymerase 1 (PARP-1) inhibitors

    Get PDF
    miR-155-5p is a well-known oncogenic microRNA, showing frequent overexpression in human malignancies, including breast cancer. Here, we show that high miR-155-5p levels are associated with unfavorable prognostic factors in two independent breast cancer cohorts (CSS cohort, n = 283; and TCGA-BRCA dataset, n = 1,095). Consistently, miR-155-5p results as differentially expressed in the breast cancer subgroups identified by the surrogate molecular classification in the CSS cohort and the PAM50 classifier in TCGA-BRCA dataset, with the TNBC and HER2-amplified tumors carrying the highest levels. Since the analysis of TCGA-BC dataset also demonstrated a significant association between miR-155-5p levels and the presence of mutations in homologous recombination (HR) genes, we hypothesized that miR-155-5p might affect cell response to the PARP-1 inhibitor Olaparib. As expected, miR-155-5p ectopic overexpression followed by Olaparib administration resulted in a greater reduction of cell viability as compared to Olaparib administration alone, suggesting that miR-155-5p might induce a synthetic lethal effect in cancer cells when coupled with PARP-1-inhibition. Overall, our data point to a role of miR-155-5p in homologous recombination deficiency and suggest miR-155-5p might be useful in predicting response to PARP1 inhibitors in the clinical setting

    Chapter 9: Silica-based Nanovectors: From Mother Nature to Biomedical Applications (Book chapter)

    Get PDF
    Diatomite is a natural porous silica material of sedimentary origin, formed by remains of diatom skeletons called “frustules.” The abundance in many areas of the world and the peculiar physico-chemical properties made diatomite an intriguing material for several applications ranging from food production to pharmaceutics. However, diatomite is a material still rarely used in biomedical applications. In this chapter, the properties of diatom frustules reduced to nanoparticles, with an average diameter less than 350 nm, as potential drug vectors are described. Their biocompatibility, cellular uptake, and capability to transport molecules inside cancer cells are discussed. Preliminary studies of in vivo toxicity are also presented.Peer reviewe

    Prognostic factors of lung cancer in lymphoma survivors (the LuCiLyS study)

    Get PDF
    Background Second cancer is the leading cause of death in lymphoma survivors, with lung cancer representing the most common solid tumor. Limited information exists about the treatment and prognosis of second lung cancer following lymphoma. Herein, we evaluated the outcome and prognostic factors of Lung Cancer in Lymphoma Survivors (the LuCiLyS study) to improve the patient selection for lung cancer treatment. Methods This is a retrospective multicentre study including consecutive patients treated for lymphoma disease that subsequently developed non-small cell lung cancer (NSCLC). Data regarding lymphoma including age, symptoms, histology, disease stage, treatment received and lymphoma status at the time of lung cancer diagnosis, and data on lung carcinoma as age, smoking history, latency from lymphoma, symptoms, histology, disease stage, treatment received, and survival were evaluated to identify the significant prognostic factors for overall survival. Results Our study population included 164 patients, 145 of which underwent lung cancer resection. The median overall survival was 63 (range, 58–85) months, and the 5-year survival rate 54%. At univariable analysis no-active lymphoma (HR: 2.19; P=0.0152); early lymphoma stage (HR: 1.95; P=0.01); adenocarcinoma histology (HR: 0.59; P=0.0421); early lung cancer stage (HR: 3.18; P<0.0001); incidental diagnosis of lung cancer (HR: 1.71; P<0.0001); and lung cancer resection (HR: 2.79; P<0.0001) were favorable prognostic factors. At multivariable analysis, no-active lymphoma (HR: 2.68; P=0.004); early lung cancer stage (HR: 2.37; P<0.0001); incidental diagnosis of lung cancer (HR: 2.00; P<0.0001); and lung cancer resection (HR: 2.07; P<0.0001) remained favorable prognostic factors. Patients with non-active lymphoma (n=146) versus those with active lymphoma (n=18) at lung cancer diagnosis presented better median survival (64 vs. 37 months; HR: 2.4; P=0.02), but median lung cancer specific survival showed no significant difference (27 vs. 19 months; HR: 0.3; P=0.17). Conclusions The presence and/or a history of lymphoma should not be a contraindication to resection of lung cancer. Inclusion of lymphoma survivors in a lung cancer-screening program may lead to early detection of lung cancer, and improve the survival

    Stepwise analysis of MIR9 loci identifies miR-9-5p to be involved in Oestrogen regulated pathways in breast cancer patients

    Get PDF
    miR-9 was initially identified as an epigenetically regulated miRNA in tumours, but inconsistent findings have been reported so far. We analysed the expression of miR-9-5p, miR-9-3p, pri-miRs and MIR9 promoters methylation status in 131 breast cancer cases and 12 normal breast tissues (NBTs). The expression of both mature miRs was increased in tumours as compared to NBTs (P < 0.001) and negatively correlated with ER protein expression (P = 0.005 and P = 0.003, for miR-9-3p and miR-9-5p respectively). In addition, miR-9-5p showed a significant negative correlation with PgR (P = 0.002). Consistently, miR-9-5p and miR-9 3p were differentially expressed in the breast cancer subgroups identified by ER and PgR expression and HER2 amplification. No significant correlation between promoter methylation and pri-miRNAs expressions was found either in tumours or in NBTs. In the Luminal breast cancer subtype the expression of miR-9-5p was associated with a worse prognosis in both univariable and multivariable analyses. Ingenuity Pathway Analysis exploring the putative interactions among miR-9-5p/miR-9-3p, ER and PgR upstream and downstream regulators suggested a regulatory loop by which miR-9-5p but not miR-9-3p is induced by steroid hormone receptor and acts within hormone-receptor regulated pathways

    Timing of surgery following SARS‐CoV‐2 infection: an international prospective cohort study

    Get PDF
    Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4–1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0–2 weeks, 3–4 weeks and 5–6 weeks of the diagnosis (odds ratio (95%CI) 4.1% (3.3–4.8), 3.9% (2.6–5.1) and 3.6% (2.0–5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5% (0.9– 2.1%)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2–8.7) vs. 2.4% (95%CI 1.4–3.4) vs. 1.3% (95%CI 0.6–2.0%), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay
    corecore