316 research outputs found
Multi-Layer Cyber-Physical Security and Resilience for Smart Grid
The smart grid is a large-scale complex system that integrates communication
technologies with the physical layer operation of the energy systems. Security
and resilience mechanisms by design are important to provide guarantee
operations for the system. This chapter provides a layered perspective of the
smart grid security and discusses game and decision theory as a tool to model
the interactions among system components and the interaction between attackers
and the system. We discuss game-theoretic applications and challenges in the
design of cross-layer robust and resilient controller, secure network routing
protocol at the data communication and networking layers, and the challenges of
the information security at the management layer of the grid. The chapter will
discuss the future directions of using game-theoretic tools in addressing
multi-layer security issues in the smart grid.Comment: 16 page
Label-free electrochemical monitoring of DNA ligase activity
This study presents a simple, label-free electrochemical technique for the monitoring of DNA ligase activity. DNA ligases are enzymes that catalyze joining of breaks in the backbone of DNA and are of significant scientific interest due to their essential nature in DNA metabolism and their importance to a range of molecular biological methodologies. The electrochemical behavior of DNA at mercury and some amalgam electrodes is strongly influenced by its backbone structure, allowing a perfect discrimination between DNA molecules containing or lacking free ends. This variation in electrochemical behavior has been utilized previously for a sensitive detection of DNA damage involving the sugar-phosphate backbone breakage. Here we show that the same principle can be utilized for monitoring of a reverse process, i.e., the repair of strand breaks by action of the DNA ligases. We demonstrate applications of the electrochemical technique for a distinction between ligatable and unligatable breaks in plasmid DNA using T4 DNA ligase, as well as for studies of the DNA backbone-joining activity in recombinant fragments of E. coli DNA ligase
Effects of Zero Tillage (No-Till) Conservation Agriculture on soil physical and biological properties and their contributions to sustainability.
Not cultivating soil, rotating crops over the years, and leaving crop residues on the surface in the practice of zero
tillage/conservation agriculture (ZT/CA) reverses the historically accelerating degradation of soil organic matter
(SOM) and soil structure, while increasing soil biological activity by a factor of 2 to 4. The results of this are
many: (a) not cultivating reduces soil compaction, leaving old root holes to facilitate internal drainage, averts the
pulverization of soil aggregates and formation of pans, reduces draft power for planting and gives shelter, winter
food and nesting sites for fauna, (b) crop residues on the surface practically eliminate wind and water erosion,
reduce soil moisture loss through the mulch effect, slow spring warm-up (possibly offset by a lower specific heat
demand with less water retention in surface soil) and act as a reserve of organically-compounded nutrients (as
they decompose to humus), (c) more SOM means higher available water and nutrient retention, higher biological
activity year round (enhancing biological controls), higher levels of water-stable aggregates and a positive carbon
sink in incremental SOM. The positive impacts for society are: (i) more and cheaper food, (ii) reduced flood and
drought-induced famine risks, (iii) a positive carbon sink in SOM and possible reductions in NO
emissions, (iv)
cleaner water and greater aquifer recharge due to reduced runoff, (v) cleaner air through effective elimination of
dust as a product of cultivation (vi) less water pollution and greater aquifer recharge from reduced rainfall runoff,
(vii) farm diesel consumption halved, (viii) reduced demand for (tropical) de-forestation, by permitting crop
expansion on steeper lands, (ix) increased wildlife populations (skylarks, plovers, partridge and peccaries) and (x)
an improved conservation mindset in farmers. It is notable that, in spite of successful practitioners in all European
countries, mainstream adoption is still to come: Europe
s ZT/CA area is 1.35 million hectares, while the world
area is now some 125 million and growing at a rate of 7 million hectares per year. More scientific measurements
of the benefits of this system are required, both to assist adoption and to trigger policy measures. In the EEC,
CAP reform (greening) needs to consider making environmental services payments for these social benefits since
a reduction in single farm payments is ineluctable and carbon footprint reduction is of the essence, in the face
of constantly-rising fuel prices and the need to cut GHG emissions. Therefore, as the principal farm tool which
offers an effective and immediate solution towards positive changes in soil quality, productivity and sustainability,
ZT/CA adoption needs financial incentives, which have high economic and environmental returns to society
Beyond solid-state lighting: Miniaturization, hybrid integration, and applications og GaN nano- and micro-LEDs
Gallium Nitride (GaN) light-emitting-diode (LED) technology has been the revolution in modern lighting. In the last decade, a huge global market of efficient, long-lasting and ubiquitous white light sources has developed around the inception of the Nobel-price-winning blue GaN LEDs. Today GaN optoelectronics is developing beyond lighting, leading to new and innovative devices, e.g. for micro-displays, being the core technology for future augmented reality and visualization, as well as point light sources for optical excitation in communications, imaging, and sensing. This explosion of applications is driven by two main directions: the ability to produce very small GaN LEDs (microLEDs and nanoLEDs) with high efficiency and across large areas, in combination with the possibility to merge optoelectronic-grade GaN microLEDs with silicon microelectronics in a fully hybrid approach. GaN LED technology today is even spreading into the realm of display technology, which has been occupied by organic LED (OLED) and liquid crystal display (LCD) for decades. In this review, the technological transition towards GaN micro- and nanodevices beyond lighting is discussed including an up-to-date overview on the state of the art
Cell Cycle-Dependent Induction of Homologous Recombination by a Tightly Regulated I-SceI Fusion Protein
Double-strand break repair is executed by two major repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). Whereas NHEJ contributes to the repair of ionizing radiation (IR)-induced double strand breaks (DSBs) throughout the cell cycle, HR acts predominantly during the S and G2 phases of the cell cycle. The rare-cutting restriction endonuclease, I-SceI, is in common use to study the repair of site-specific chromosomal DSBs in vertebrate cells. To facilitate analysis of I-SceI-induced DSB repair, we have developed a stably expressed I-SceI fusion protein that enables precise temporal control of I-SceI activation, and correspondingly tight control of the timing of onset of site-specific chromosome breakage. I-SceI-induced HR showed a strong, positive linear correlation with the percentage of cells in S phase, and was negatively correlated with the G1 fraction. Acute depletion of BRCA1, a key regulator of HR, disrupted the relationship between S phase fraction and I-SceI-induced HR, consistent with the hypothesis that BRCA1 regulates HR during S phase
Efficient mutagenesis of the rhodopsin gene in rod photoreceptor neurons in mice
Dominant mutations in the rhodopsin gene, which is expressed in rod photoreceptor cells, are a major cause of the hereditary-blinding disease, autosomal dominant retinitis pigmentosa. Therapeutic strategies designed to edit such mutations will likely depend on the introduction of double-strand breaks and their subsequent repair by homologous recombination or non-homologous end joining. At present, the break repair capabilities of mature neurons, in general, and rod cells, in particular, are undefined. To detect break repair, we generated mice that carry a modified human rhodopsin-GFP fusion gene at the normal mouse rhodopsin locus. The rhodopsin-GFP gene carries tandem copies of exon 2, with an ISceI recognition site situated between them. An ISceI-induced break can be repaired either by non-homologous end joining or by recombination between the duplicated segments, generating a functional rhodopsin-GFP gene. We introduced breaks using recombinant adeno-associated virus to transduce the gene encoding ISceI nuclease. We found that virtually 100% of transduced rod cells were mutated at the ISceI site, with ∼85% of the genomes altered by end joining and ∼15% by the single-strand annealing pathway of homologous recombination. These studies establish that the genomes of terminally differentiated rod cells can be efficiently edited in living organisms
MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens
The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development
Can a Species Keep Pace with a Shifting Climate?
Consider a patch of favorable habitat surrounded by unfavorable habitat and assume that due to a shifting climate, the patch moves with a fixed speed in a one-dimensional universe. Let the patch be inhabited by a population of individuals that reproduce, disperse, and die. Will the population persist? How does the answer depend on the length of the patch, the speed of movement of the patch, the net population growth rate under constant conditions, and the mobility of the individuals? We will answer these questions in the context of a simple dynamic profile model that incorporates climate shift, population dynamics, and migration. The model takes the form of a growth-diffusion equation. We first consider a special case and derive an explicit condition by glueing phase portraits. Then we establish a strict qualitative dichotomy for a large class of models by way of rigorous PDE methods, in particular the maximum principle. The results show that mobility can both reduce and enhance the ability to track climate change that a narrow range can severely reduce this ability and that population range and total population size can both increase and decrease under a moving climate. It is also shown that range shift may be easier to detect at the expanding front, simply because it is considerably steeper than the retreating back
- …