67 research outputs found

    Oceanographic observations of eddies impacting the Prince Edward Islands, South Africa

    Get PDF
    The ecosystem of the isolated Prince Edward Islands, south of the African continent, is strongly impacted by ocean eddies that are associated with the eastward flowing Antarctic Circumpolar Current. Satellite altimetry has revealed that the archipelago lies in a region of enhanced eddy kinetic energy. In the late 1990s it became apparent that in order to understand the influence of these eddies on the islands' ecosystem, the source, trajectory and nature of these eddies needed to be studied and understood. To this end a special research project with a strong ocean-going component was designed, the DEIMEC (Dynamics of Eddy Impact on Marion's ECosystem) programme. In this review we focus on the physical oceanography and summarize the aims, the results and the successes of this South African research initiative. In the vicinity of the Prince Edward Islands, an average of three intense well-defined eddies is observed per year. Their advection speeds are of the order of a few kilometres per day and longevities of 7-11 months. These features, of c. 100 km in diameter and reaching depths of at least 1000 m, transport anomalous water masses across the Polar Frontal Zone

    Energy Scaling of Minimum-Bias Tunes

    Get PDF
    We propose that the flexibility offered by modern event-generator tuning tools allows for more than just obtaining "best fits" to a collection of data. In particular, we argue that the universality of the underlying physics model can be tested by performing several, mutually independent, optimizations of the generator parameters in different physical regions. For regions in which these optimizations return similar and self-consistent parameter values, the model can be considered universal. Deviations from this behavior can be associated with a breakdown of the modeling, with the nature of the deviations giving clues as to the nature of the breakdown. We apply this procedure to study the energy scaling of a class of minimum-bias models based on multiple parton interactions (MPI) and pT-ordered showers, implemented in the Pythia 6.4 generator. We find that a parameter controlling the strength of color reconnections in the final state is the most important source of non-universality in this model.Comment: 17 pages, 3 figures, 4 table

    Analyses of multiplicity distributions with \eta_c and Bose-Einstein correlations at LHC by means of generalized Glauber-Lachs formula

    Full text link
    Using the negative binomial distribution (NBD) and the generalized Glauber-Lachs (GGL) formula, we analyze the data on charged multiplicity distributions with pseudo-rapidity cutoffs \eta_c at 0.9, 2.36, and 7 TeV by ALICE Collaboration and at 0.2, 0.54, and 0.9 TeV by UA5 Collaboration. We confirm that the KNO scaling holds among the multiplicity distributions with \eta_c = 0.5 at \sqrt{s} = 0.2\sim2.36 TeV and estimate the energy dependence of a parameter 1/k in NBD and parameters 1/k and \gamma (the ratio of the average value of the coherent hadrons to that of the chaotic hadrons) in the GGL formula. Using empirical formulae for the parameters 1/k and \gamma in the GGL formula, we predict the multiplicity distributions with \eta_c = 0.5 at 7 and 14 TeV. Data on the 2nd order Bose-Einstein correlations (BEC) at 0.9 TeV by ALICE Collaboration and 0.9 and 2.36 TeV by CMS Collaboration are also analyzed based on the GGL formula. Prediction for the 3rd order BEC at 0.9 and 2.36 TeV are presented. Moreover, the information entropy is discussed

    Superposition effect and clan structure in forward-backward multiplicity correlations

    Get PDF
    The main purpose of this paper is to discuss the link between forward-backward multiplicity correlations properties and the shape of the corresponding final charged particle multiplicity distribution in various classes of events in different collisions. It is shown that the same mechanism which explains the shoulder effect and the H_n vs. n oscillations in charged particle multiplicity distributions, i.e., the weighted superposition of different classes of events with negative binomial properties, reproduces within experimental errors also the forward-backward multiplicity correlation strength in e+e- annihilation at LEP energy and allows interesting predictions for pp collisions in the TeV energy region, to be tested at LHC, for instance with the ALICE detector. We limit ourselves at present to study substructures properties in hadron-hadron collisions and e+e- annihilation; they are examined as ancillary examples in the conviction that their understanding might be relevant also in other more complex cases.Comment: 16 page

    Clan Structure Analysis and Rapidity Gap Probability

    Get PDF
    Clan structure analysis in rapidity intervals is generalized from negative binomial multiplicity distribution to the wide class of compound Poisson distributions. The link of generalized clan structure analysis with correlation functions is also established. These theoretical results are then applied to minimum bias events and evidentiate new interesting features, which can be inspiring and useful in order to discuss data on rapidity gap probability at TEVATRON and HERA.Comment: (14 pages in Plain TeX plus 5 Postscript Figures, all compressed via uufiles) DFTT 28/9

    Estimating the inelasticity with the information theory approach

    Get PDF
    Using the information theory approach, in both its extensive and nonextensive versions, we estimate the inelasticity parameter KK of hadronic reactions together with its distribution and energy dependence from ppˉp\bar{p} and pppp data. We find that the inelasticity remains essentially constant in energy except for a variation around K0.5K\sim 0.5, as was originally expected.Comment: 14 pages, 8 figures. Misprints correcte

    Scaling violations: Connections between elastic and inelastic hadron scattering in a geometrical approach

    Get PDF
    Starting from a short range expansion of the inelastic overlap function, capable of describing quite well the elastic pp and pˉp\bar{p}p scattering data, we obtain extensions to the inelastic channel, through unitarity and an impact parameter approach. Based on geometrical arguments we infer some characteristics of the elementary hadronic process and this allows an excellent description of the inclusive multiplicity distributions in pppp and pˉp\bar{p}p collisions. With this approach we quantitatively correlate the violations of both geometrical and KNO scaling in an analytical way. The physical picture from both channels is that the geometrical evolution of the hadronic constituents is principally reponsible for the energy dependence of the physical quantities rather than the dynamical (elementary) interaction itself.Comment: 16 pages, aps-revtex, 11 figure

    Multiplicity Studies and Effective Energy in ALICE at the LHC

    Full text link
    In this work we explore the possibility to perform ``effective energy'' studies in very high energy collisions at the CERN Large Hadron Collider (LHC). In particular, we focus on the possibility to measure in pppp collisions the average charged multiplicity as a function of the effective energy with the ALICE experiment, using its capability to measure the energy of the leading baryons with the Zero Degree Calorimeters. Analyses of this kind have been done at lower centre--of--mass energies and have shown that, once the appropriate kinematic variables are chosen, particle production is characterized by universal properties: no matter the nature of the interacting particles, the final states have identical features. Assuming that this universality picture can be extended to {\it ion--ion} collisions, as suggested by recent results from RHIC experiments, a novel approach based on the scaling hypothesis for limiting fragmentation has been used to derive the expected charged event multiplicity in AAAA interactions at LHC. This leads to scenarios where the multiplicity is significantly lower compared to most of the predictions from the models currently used to describe high energy AAAA collisions. A mean charged multiplicity of about 1000-2000 per rapidity unit (at η0\eta \sim 0) is expected for the most central PbPbPb-Pb collisions at sNN=5.5TeV\sqrt{s_{NN}} = 5.5 TeV.Comment: 12 pages, 19 figures. In memory of A. Smirnitski

    Charged-Particle Multiplicities in Charged-Current Neutrino-- and Anti-Neutrino--Nucleus Interactions

    Get PDF
    The CHORUS experiment, designed to search for νμντ\nu_{\mu}\to\nu_{\tau} oscillations, consists of a nuclear emulsion target and electronic detectors. In this paper, results on the production of charged particles in a small sample of charged-current neutrino-- and anti-neutrino--nucleus interactions at high energy are presented. For each event, the emission angle and the ionization features of the charged particles produced in the interaction are recorded, while the standard kinematic variables are reconstructed using the electronic detectors. The average multiplicities for charged tracks, the pseudo-rapidity distributions, the dispersion in the multiplicity of charged particles and the KNO scaling are studied in different kinematical regions. A study of quasi-elastic topologies performed for the first time in nuclear emulsions is also reported. The results are presented in a form suitable for use in the validation of Monte Carlo generators of neutrino--nucleus interactions.Comment: 17 pages, 5 figure

    Charged multiplicities in pp and AA collisions at LHC

    Full text link
    The mid-rapidity charged particle multiplicities in pp and AA collisions at LHC energies are described in the framework of a generalized eikonal model with shadowing corrections incorporated in AA. We show that the pp data require a Pomeron intercept close to 1.2, higher than the conventional one close to 1.1. An s0.11s^{0.11} energy dependence is obtained in the LHC range and beyond. The size and centrality dependence of the AA multiplicity at s=2.76\sqrt{s} = 2.76 TeV is reproduced and its energy dependence is predicted.Comment: 12 pages, 4 figures, 2 tables To be published in EPJ
    corecore