77 research outputs found

    Large Surface X-Ray Pixel Detector

    No full text

    XPAD: pixel detector for material sciences

    No full text
    Currently available 2D detectors do not make full use of the high flux and high brilliance of third generation synchrotron sources. The XPAD prototype, using active pixels, has been developed to fulfil the needs of materials science scattering experiments. At the time, its prototype is build of eight modules of eight chips. The threshold calibration of /spl ap/4 10/sup 4/ pixels is discussed. Applications to powder diffraction or SAXS experiments prove that it allows to record high quality data

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic

    XPAD: A Photons Counting Pixel Detector for Material Sciences and Small Animal imaging

    No full text
    A paraître dans NIMInternational audienceExperiments on high flux and high brilliance 3rd generation synchrotron X-ray sources are now limited by detector performance. Photon counting hybrid pixel detectors are being investigated as a solution to improve the dynamic range and the readout speed of the available 2D detectors. The XPAD2 is a large surface hybrid pixel detector (68 x 65 mm2^2) with a dynamic response which ranges from 0.01 photons/pixel/s up to 106^6 photons/pixel/s. High resolution data have been recorded using the XPAD2. The comparison with data measured using a conventional setup shows a gain on measurement duration by a factor 20 and on dynamic range. A new generation of pixel detector (XPAD3) is presently under development. For this, a new electronic chip (the XPAD3) has been designed to improve spatial resolution by using 130 μ\mum pixels and detector efficiency by using CdTe sensors. XPAD2 is also operated with PIXSCAN, a CT-scanner for mice

    Sedimentation and Fouling of Optical Surfaces at the ANTARES Site

    Get PDF
    ANTARES is a project leading towards the construction and deployment of a neutrino telescope in the deep Mediterranean Sea. The telescope will use an array of photomultiplier tubes to detect the Cherenkov light emitted by muons resulting from the interaction with matter of high energy neutrinos. In the vicinity of the deployment site the ANTARES collaboration has performed a series of in-situ measurements to study the change in light transmission through glass surfaces during immersions of several months. The average loss of light transmission is estimated to be only ~2% at the equator of a glass sphere one year after deployment. It decreases with increasing zenith angle, and tends to saturate with time. The transmission loss, therefore, is expected to remain small for the several year lifetime of the ANTARES detector whose optical modules are oriented downwards. The measurements were complemented by the analysis of the ^{210}Pb activity profile in sediment cores and the study of biofouling on glass plates. Despite a significant sedimentation rate at the site, in the 0.02 - 0.05 cm.yr^{-1} range, the sediments adhere loosely to the glass surfaces and can be washed off by water currents. Further, fouling by deposits of light-absorbing particulates is only significant for surfaces facing upwards.Comment: 18 pages, 14 figures (pdf), submitted to Astroparticle Physic

    The ANTARES Optical Module

    Get PDF
    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km-squared and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R & D studies and is reviewed here in detail.Comment: 26 pages, 15 figures, to be published in NI

    Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope

    Get PDF
    The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES

    LHCb calorimeters: Technical Design Report

    Get PDF
    corecore