5,830 research outputs found
Ultra--cold gases and the detection of the Earth's rotation: Bogoliubov space and gravitomagnetism
The present work analyzes the consequences of the gravitomagnetic effect of
the Earth upon a bosonic gas in which the corresponding atoms have a
non--vanishing orbital angular momentum. Concerning the ground state of the
Bogoliubov space of this system we deduce the consequences, on the pressure and
on the speed of sound, of the gravitomagnetic effect. We prove that the effect
on a single atom is very small, but we also show that for some thermodynamical
properties the consequences scale as a non--trivial function of the number of
particles.Comment: 4 page
Preliminary results for RR Lyrae stars and Classical Cepheids from the Vista Magellanic Cloud (VMC) Survey
The Vista Magellanic Cloud (VMC, PI M.R. Cioni) survey is collecting
-band time series photometry of the system formed by the two Magellanic
Clouds (MC) and the "bridge" that connects them. These data are used to build
-band light curves of the MC RR Lyrae stars and Classical Cepheids and
determine absolute distances and the 3D geometry of the whole system using the
-band period luminosity (), the period - luminosity - color ()
and the Wesenhiet relations applicable to these types of variables. As an
example of the survey potential we present results from the VMC observations of
two fields centered respectively on the South Ecliptic Pole and the 30 Doradus
star forming region of the Large Magellanic Cloud. The VMC -band light
curves of the RR Lyrae stars in these two regions have very good photometric
quality with typical errors for the individual data points in the range of
0.02 to 0.05 mag. The Cepheids have excellent light curves (typical
errors of 0.01 mag). The average magnitudes derived for both types
of variables were used to derive relations that are in general good
agreement within the errors with the literature data, and show a smaller
scatter than previous studies.Comment: 7 pages, 6 figure. Accepted for publication in Astrophysics and Space
Science. Following a presentation at the conference "The Fundamental Cosmic
Distance Scale: State of the Art and the Gaia Perspective", Naples, May 201
Photon deflection and precession of the periastron in terms of spatial gravitational fields
We show that a Maxwell-like system of equations for spatial gravitational
fields and (latter being the analogy of a magnetic field),
modified to include an extra term for the field in the expression for
force, leads to the correct values for the photon deflection angle and for the
precession of the periastron
Predictions of selected flavour observables within the Standard Model
This letter gathers a selection of Standard Model predictions issued from the
metrology of the CKM parameters performed by the CKMfitter group. The selection
includes purely leptonic decays of neutral and charged B, D and K mesons. In
the light of the expected measurements from the LHCb experiment, a special
attention is given to the radiative decay modes of B mesons as well as to the
B-meson mixing observables, in particular the semileptonic charge asymmetries
a^d,s_SL which have been recently investigated by the D0 experiment at
Tevatron. Constraints arising from rare kaon decays are addressed, in light of
both current results and expected performances of future rare kaon experiments.
All results have been obtained with the CKMfitter analysis package, featuring
the frequentist statistical approach and using Rfit to handle theoretical
uncertainties.Comment: 8 pages, 1 figure, 2 tables. Typos corrected and discussion of
agreement between SM and data update
The DICE calibration project: design, characterization, and first results
We describe the design, operation, and first results of a photometric
calibration project, called DICE (Direct Illumination Calibration Experiment),
aiming at achieving precise instrumental calibration of optical telescopes. The
heart of DICE is an illumination device composed of 24 narrow-spectrum,
high-intensity, light-emitting diodes (LED) chosen to cover the
ultraviolet-to-near-infrared spectral range. It implements a point-like source
placed at a finite distance from the telescope entrance pupil, yielding a flat
field illumination that covers the entire field of view of the imager. The
purpose of this system is to perform a lightweight routine monitoring of the
imager passbands with a precision better than 5 per-mil on the relative
passband normalisations and about 3{\AA} on the filter cutoff positions. The
light source is calibrated on a spectrophotometric bench. As our fundamental
metrology standard, we use a photodiode calibrated at NIST. The radiant
intensity of each beam is mapped, and spectra are measured for each LED. All
measurements are conducted at temperatures ranging from 0{\deg}C to 25{\deg}C
in order to study the temperature dependence of the system. The photometric and
spectroscopic measurements are combined into a model that predicts the spectral
intensity of the source as a function of temperature. We find that the
calibration beams are stable at the level -- after taking the slight
temperature dependence of the LED emission properties into account. We show
that the spectral intensity of the source can be characterised with a precision
of 3{\AA} in wavelength. In flux, we reach an accuracy of about 0.2-0.5%
depending on how we understand the off-diagonal terms of the error budget
affecting the calibration of the NIST photodiode. With a routine 60-mn
calibration program, the apparatus is able to constrain the passbands at the
targeted precision levels.Comment: 25 pages, 27 figures, accepted for publication in A&
Observation of the Decay B^-âD_s^((*)+)K^-â^-ÎœÌ _â
We report the observation of the decay B^- â D_s^((*)+)K^-â^-ÎœÌ
_â based on 342ââfb^(-1) of data collected at the ΄(4S) resonance with the BABAR detector at the PEP-II e^+e^- storage rings at SLAC. A simultaneous fit to three D_s^+ decay chains is performed to extract the signal yield from measurements of the squared missing mass in the B meson decay. We observe the decay B^- â D_s^((*)+)K^-â^-ÎœÌ
_â with a significance greater than 5 standard deviations (including systematic uncertainties) and measure its branching fraction to be B(B^- â D_s^((*)+)K^-â^-ÎœÌ
_â)=[6.13_(-1.03)^(+1.04)(stat)±0.43(syst)±0.51(B(D_s))]Ă10^(-4), where the last error reflects the limited knowledge of the D_s branching fractions
ExELS: an exoplanet legacy science proposal for the ESA Euclid mission. II. Hot exoplanets and sub-stellar systems
The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the
frequency of cold exoplanets down to Earth mass from host separations of ~1 AU
out to the free-floating regime by detecting microlensing events in Galactic
Bulge. We show that ExELS can also detect large numbers of hot, transiting
exoplanets in the same population. The combined microlensing+transit survey
would allow the first self-consistent estimate of the relative frequencies of
hot and cold sub-stellar companions, reducing biases in comparing "near-field"
radial velocity and transiting exoplanets with "far-field" microlensing
exoplanets. The age of the Bulge and its spread in metallicity further allows
ExELS to better constrain both the variation of companion frequency with
metallicity and statistically explore the strength of star-planet tides.
We conservatively estimate that ExELS will detect ~4100 sub-stellar objects,
with sensitivity typically reaching down to Neptune-mass planets. Of these,
~600 will be detectable in both Euclid's VIS (optical) channel and NISP H-band
imager, with ~90% of detections being hot Jupiters. Likely scenarios predict a
range of 2900-7000 for VIS and 400-1600 for H-band. Twice as many can be
expected in VIS if the cadence can be increased to match the 20-minute H-band
cadence. The separation of planets from brown dwarfs via Doppler boosting or
ellipsoidal variability will be possible in a handful of cases. Radial velocity
confirmation should be possible in some cases, using 30-metre-class telescopes.
We expect secondary eclipses, and reflection and emission from planets to be
detectable in up to ~100 systems in both VIS and NISP-H. Transits of ~500
planetary-radius companions will be characterised with two-colour photometry
and ~40 with four-colour photometry (VIS,YJH), and the albedo of (and emission
from) a large sample of hot Jupiters in the H-band can be explored
statistically.Comment: 18 pages, 16 figures, accepted MNRA
High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey
The SkyMapper Southern Sky Survey is carrying out a search for the most
metal-poor stars in the Galaxy. It identifies candidates by way of its unique
filter set that allows for estimation of stellar atmospheric parameters. The
set includes a narrow filter centered on the Ca II K 3933A line, enabling a
robust estimate of stellar metallicity. Promising candidates are then confirmed
with spectroscopy. We present the analysis of Magellan-MIKE high-resolution
spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years
of commissioning observations. 41 stars have [Fe/H] <= -3.0. Nine have [Fe/H]
<= -3.5, with three at [Fe/H] ~ -4. A 1D LTE abundance analysis of the elements
Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba and Eu shows
these stars have [X/Fe] ratios typical of other halo stars. One star with low
[X/Fe]
[X/Fe values appears to be "Fe-enhanced," while another star has an extremely
large [Sr/Ba] ratio: >2. Only one other star is known to have a comparable
value. Seven stars are "CEMP-no" stars ([C/Fe] > 0.7, [Ba/Fe] < 0). 21 stars
exhibit mild r-process element enhancements (0.3 <=[Eu/Fe] < 1.0), while four
stars have [Eu/Fe] >= 1.0. These results demonstrate the ability to identify
extremely metal-poor stars from SkyMapper photometry, pointing to increased
sample sizes and a better characterization of the metal-poor tail of the halo
metallicity distribution function in the future.Comment: Minor corrections to text, missing data added to Tables 3 and 4;
updated to match published version. Complete tables included in sourc
Photometric analysis of Magellanic Cloud R Coronae Borealis Stars in the recovery phase of their declines
This paper presents the initial results of a multi-site photometric programme
to examine the extraordinary behaviour displayed by 18 R Coronae Borealis (RCB)
stars in the Magellanic Clouds (MCs). RCB stars exhibit a unique variability
whereby they undergo rapid declines of up to several magnitudes. These are
thought to be caused by the formation of dust in the stellar environment which
reduces the brightness.
The monitoring programme comprised the collection of UBVRI photometric data
using five telescopes located at three different southern hemisphere longitudes
(Las Campanas Observatory in Chile, Mount Joun University Observatory in New
Zealand, and the Southern African Large Telescope (SALT) in South Africa).
Examination of the data acquired in the V and I filters resulted in the
identification of a total of 18 RCB declines occurring in four stars.
Construction of colour-magnitude diagrams (V vs V-I), during the recovery to
maximum light were undertaken in order to study the unique colour behaviour
associated with the RCB declines. The combined recovery slope for the four
stars was determined to be 3.37+/-0.24, which is similar to the value of
3.1+/-0.1 calculated for galactic RCB stars (Skuljan et al. 2003). These
results may imply that the nature of the dust (i.e. the particle size) is
similar in both our Galaxy and the MCs.Comment: accepted for publication in the Publications of the Astronomical
Society of Australi
ExELS: an exoplanet legacy science proposal for the ESA Euclid mission. II. Hot exoplanets and sub-stellar systems
The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the
frequency of cold exoplanets down to Earth mass from host separations of ~1 AU
out to the free-floating regime by detecting microlensing events in Galactic
Bulge. We show that ExELS can also detect large numbers of hot, transiting
exoplanets in the same population. The combined microlensing+transit survey
would allow the first self-consistent estimate of the relative frequencies of
hot and cold sub-stellar companions, reducing biases in comparing "near-field"
radial velocity and transiting exoplanets with "far-field" microlensing
exoplanets. The age of the Bulge and its spread in metallicity further allows
ExELS to better constrain both the variation of companion frequency with
metallicity and statistically explore the strength of star-planet tides.
We conservatively estimate that ExELS will detect ~4100 sub-stellar objects,
with sensitivity typically reaching down to Neptune-mass planets. Of these,
~600 will be detectable in both Euclid's VIS (optical) channel and NISP H-band
imager, with ~90% of detections being hot Jupiters. Likely scenarios predict a
range of 2900-7000 for VIS and 400-1600 for H-band. Twice as many can be
expected in VIS if the cadence can be increased to match the 20-minute H-band
cadence. The separation of planets from brown dwarfs via Doppler boosting or
ellipsoidal variability will be possible in a handful of cases. Radial velocity
confirmation should be possible in some cases, using 30-metre-class telescopes.
We expect secondary eclipses, and reflection and emission from planets to be
detectable in up to ~100 systems in both VIS and NISP-H. Transits of ~500
planetary-radius companions will be characterised with two-colour photometry
and ~40 with four-colour photometry (VIS,YJH), and the albedo of (and emission
from) a large sample of hot Jupiters in the H-band can be explored
statistically.Comment: 18 pages, 16 figures, accepted MNRA
- âŠ