1,223 research outputs found

    A decomposition method for finding optimal container stowage plans

    Get PDF
    In transportation of goods in large container ships, shipping industries need to minimize the time spent at ports to load/unload containers. An optimal stowage of containers on board minimizes unnecessary unloading/reloading movements, while satisfying many operational constraints. We address the basic container stowage planning problem (CSPP). Different heuristics and formulations have been proposed for the CSPP, but finding an optimal stowage plan remains an open problem even for small-sized instances. We introduce a novel formulation that decomposes CSPPs into two sets of decision variables: the first defining how single container stacks evolve over time and the second modeling port-dependent constraints. Its linear relaxation is solved through stabilized column generation and with different heuristic and exact pricing algorithms. The lower bound achieved is then used to find an optimal stowage plan by solving a mixed-integer programming model. The proposed solution method outperforms the methods from the literature and can solve to optimality instances with up to 10 ports and 5,000 containers in a few minutes of computing time

    A study of the strengthening mechanisms in the novel precipitation hardening KEYLOS® 2001 Steel

    Get PDF
    KeyLos ® 2001 is a new precipitation-hardening steel especially developed for plastic moulds. In this study the precipitation stage of KeyLos ® 2001 steel has been investigated and compared to the results obtained with 17-4 PH steel. Precipitation-hardening has been carried out at three different temperatures and the stages of hardening and overageing have been studied in order to clarify the hardening mechanisms. It has been found that hardening and softening mechanism during the precipitation-hardening treatment occur at higher temperatures and in correspondence with more prolonged treatment times than those typical for the best known 17-4 PH steel; hardness is then expected to remain stable also for very extended mould lives. Microstructural investigations by means of Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) have also been carried out and the microstructural parameters responsible for the hardening and overageing have been pointed out

    Efficacy of foliage fungicides against eyespot of winter wheat in Northern Italy

    Get PDF
    Summary. The efficacy of foliage fungicide applications against eyespot of soft wheat cv. Serio was evaluated under natural Oculimacula infection in an experimental area in the Po Valley (Northern Italy). The fungicide treatments prochloraz, prochloraz + propiconazole, and trifloxystrobin + cyproconazole were applied in the years of 2006 through to 2009. Seeds were also treated with a formulated product based on guazatine. All foliage fungicides were applied at the stem extension growth stage (Zadoks growth stage 30\u201232), and at the manufacturer recommended rates. All tested treatments reduced the disease severity compared with untreated control. Prochloraz alone and particularly in combination with propiconazole gave the greatest efficacy in reducing eyespot. All treatments increased grain yield in 2006 and 2008. The effects of treatments on some yield parameters were also examined

    Exact methods for the traveling salesman problem with multiple drones

    Get PDF
    Drone delivery is drawing increasing attention in last-mile delivery. Effective solution methods to solve decision-making problems arising in drone delivery allow to run and assess drone delivery systems. In this paper, we focus on delivery systems with a single traditional vehicle and multiple drones working in tandem to fulfill customer requests. We address the Traveling Salesman Problem with Multiple Drones (TSP-MD) and investigate the modeling challenges posed by the presence of multiple drones, which have proven to be hard to handle in the literature. We propose a compact Mixed-Integer Linear Programming (MILP) model to formulate the TSP-MD and several families of valid inequalities. Moreover, we illustrate an exact decomposition approach based on the compact MILP and a branch-and-cut algorithm. We show that this exact approach can solve instances with up to 24 customers to proven optimality, improving upon existing exact methods that can solve similar problems with up to ten customers only

    Effect of kolsterising treatment on surface properties of a duplex stainless steel

    Get PDF
    In recent years, attempts of engineering the surface of duplex stainless steels were made in order to enhance their hardness and tribological properties, without affecting their corrosion resistance. A possibility of improving these properties is provided by a family of processes developed by Prof. B.H. Kolster in the Netherlands in the late 1980’s. These processes (usually referred to as Kolsterising® treatments) consist in a low temperature surface carburizing, which involves the diffusion of large quantities of carbon atoms (up to 6-7 wt.%) into the steel at a diffusion temperature below 450 °C. In the present paper a characterization of the surface layer of Kolsterised duplex SAF 2205 stainless steel was carried out to study the effects of this treatment on surface properties. The characterization includes optical metallographic examination, microhardness tests and SEM-EDS investigation on the Kolsterised steel in the as treated condition and after annealing treatments at 200, 250, 300 350 and 400°C for 10 hours, to evaluate the stability of Kolsterised layer’s properties with a moderate increase in temperature. Moreover, complying with ASTM G48-03 Method E Standard, in order to evaluate the effect of the Kolsterising® treatment on steel pitting resistance, the critical pitting temperature was obtained for Kolsterised duplex SAF 2205 stainless steel compared with the base metal

    On the crack path of rolling contact fatigue cracks in a railway wheel steel

    Get PDF
    The objective of the present paper is to give some preliminary results obtained in the frame of a more wide investigation on the rolling contact fatigue (RCF) behavior of a railway wheel steel. The effect of different test parameters on the RCF fatigue strength of the railway wheel steel was evaluated. RCF tests were conducted using two cylindrical contact specimens under different Po/k ratio (where Po is the maximum Hertzian pressure, k is the yield stress in shear of the material), under dry contact conditions or with water lubrication, and at varying slip ratio. In the present study crack initiation location and crack growth direction were carefully investigated; microscopic examination showed that the cracks were initiated at the surface, propagated obliquely in the depth direction and then occasionally branched into two directions. Usually multiple cracks are initiated, at the rolling contact surface, caused by the accumulation of shear deformation due to repeated rolling–sliding contact loading. Subsequent crack growth has been found to occur along specific sloped directions. The influence of Po/k ratio, dry or wet contact, and slip ratio on crack slope angle to the radial direction and the depths at which slope changes occur has been investigated. Observed crack slopes and slope change position have been discussed according to crack path prediction criteria in the literature

    The Team Orienteering Problem with Overlaps : An Application in Cash Logistics

    Get PDF
    The team orienteering problem (TOP) aims at finding a set of routes subject to maximum route duration constraints that maximize the total collected profit from a set of customers. Motivated by a real-life automated teller machine cash replenishment problem that seeks for routes maximizing the number of bank account holders having access to cash withdrawal, we investigate a generalization of the TOP that we call the team orienteering problem with overlaps (TOPO). For this problem, the sum of individual profits may overestimate the real profit. We present exact solution methods based on column generation and a metaheuristic based on large neighborhood search to solve the TOPO. An extensive computational analysis shows that the proposed solution methods can efficiently solve synthetic and real-life TOPO instances. Moreover, the proposed methods are competitive with the best algorithms from the literature for the TOP. In particular, the exact methods can find the optimal solution of 371 of the 387 benchmark TOP instances, 33 of which are closed for the first time

    A Lignin-Rich Extract of Giant Reed (Arundo donax L.) as a Possible Tool to Manage Soilborne Pathogens in Horticulture: A Preliminary Study on a Model Pathosystem

    Get PDF
    Finding new sustainable tools for crop protection in horticulture has become mandatory. Giant reed (Arundo donax L.) is a tall, perennial, widely diffuse lignocellulosic grass, mainly proposed for bioenergy production due to the fact of its high biomass yield and low agronomic requirements. Some studies have already highlighted antimicrobial and antifungal properties of giant reed-derived compounds. This study aimed at investigating the potential of a lignin-rich giant reed extract for crop protection. The extract, obtained by dry biomass treatment with potassium hydroxide at 120◦C, followed by neutralization, was chemically characterized. A preliminary in vitro screening among several pathogenic strains of fungi and oomycetes showed a high sensitivity by most of the soilborne pathogens to the extract; thus, an experiment was performed with the model pathosystem, Pythium ultimum–zucchini in a growth substrate composed of peat or sand. The adsorption by peat and sand of most of the lignin-derived compounds contained in the extract was also observed. The extract proved to be effective in restoring the number of healthy zucchini plantlets in the substrate infected with P. ultimum compared to the untreated control. This study highlights the potential of the lignin-rich giant reed extract to sustain crop health in horticulture

    Improving Rigid 3-D Calibration for Robotic Surgery

    Get PDF
    Autonomy is the next frontier of research in robotic surgery and its aim is to improve the quality of surgical procedures in the next future. One fundamental requirement for autonomy is advanced perception capability through vision sensors. In this article, we propose a novel calibration technique for a surgical scenario with a da Vinci Research Kit (dVRK) robot. Camera and robotic arms calibration are necessary to precise position and emulate expert surgeon. The novel calibration technique is tailored for RGB-D cameras. Different tests performed on relevant use cases prove that we significantly improve precision and accuracy with respect to state of the art solutions for similar devices on a surgical-size setups. Moreover, our calibration method can be easily extended to standard surgical endoscope used in real surgical scenario
    • …
    corecore