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Abstract

Drone delivery is drawing increasing attention in last-mile delivery. Effective solution methods to

solve decision-making problems arising in drone delivery allow to run and assess drone delivery

systems. In this paper, we focus on delivery systems with a single traditional vehicle and multiple

drones working in tandem to fulfill customer requests. We address the Traveling Salesman Problem

with Multiple Drones (TSP-MD) and investigate the modeling challenges posed by the presence of

multiple drones, which have proven to be hard to handle in the literature. We propose a compact

Mixed-Integer Linear Programming (MILP) model to formulate the TSP-MD and several families of

valid inequalities. Moreover, we illustrate an exact decomposition approach based on the compact

MILP and a branch-and-cut algorithm. We show that this exact approach can solve instances with up

to 24 customers to proven optimality, improving upon existing exact methods that can solve similar

problems with up to ten customers only.

Keywords: traveling salesman; drone; exact method; branch-and-cut; mixed integer linear

programming

1. Introduction

The idea of delivering parcels with drones is becoming more and more popular. Since 2013, major

transport and delivery companies, such as DHL and UPS, have been carrying out experiments to test

the feasibility of parcel drone delivery, see, e.g., DHL Parcelcopter project 1 and UPS Flight Forward

1http://www.dpdhl.com/en/media-relations/specials/dhl-parcelcopter.html
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project2. Through its Prime Air system,3 Amazon is also working on a system that can deliver parcels

in less than 30 minutes. Moreover, Google with its Alphabet section has designed X-Wing,4 an un-

manned aerial vehicle specifically designed for parcel delivery. Replacing traditional vehicles with

drones to deliver parcels can allow to reduce transportation costs, decrease delivery times and car-

bon footprint, as well as reach areas inaccessible with traditional vehicles (see, e.g., Joerss et al. (2016),

Lee et al. (2016), Kellermann et al. (2020)).

Parcel delivery with drones is also drawing increasing attention in the research community, par-

ticularly among researchers who develop solution methods for distribution problems. Distribution

problems arising in parcel drone delivery can be classified into three main categories depending on

how drones interact (if any) with traditional vehicles (i.e., trucks): (1) drones operate on their own,

(2) drones cooperate with trucks, and (3) drones work in tandem with trucks. When drones operate

on their own, they perform all deliveries without the support of other vehicles; in this type of delivery

systems, the main decisions concern locating drone’s facilities, such as warehouses and recharging

points (see, e.g., Coelho et al. (2017), Paradiso et al. (2020), Park et al. (2020)). When drones cooper-

ate with trucks, they work independently, in the sense that drones travel their own routes and serve

some of the customers while trucks travel other routes to serve other customers; the cooperation be-

tween the two types of vehicles consists of making sure that all customers are served efficiently. An

example of cooperation between drones and trucks without the two being synchronized is the Par-

allel Drone Scheduling Traveling Salesman Problem investigated by Murray & Chu (2015). In the last

type of problems, where drones work in tandem with trucks, drones and trucks are synchronized;

trucks both visit customers to deliver parcels but also act as moving stations and recharging facilities,

where drones can take off and land to pick up and deliver parcels to serve their own customers and

can recharge their batteries (see, e.g., Murray & Chu (2015), Agatz et al. (2018), Poikonen et al. (2019),

Ha et al. (2020)).

In this paper, we focus on the last type of delivery systems, where trucks and drones work in

tandem, and we focus on solution methods to design optimal combined routes for the two types of

vehicles. In particular, we investigate systems where there are a single truck and multiple drones.

This topic is more and more popular in the scientific literature also due to the growing interest shown

by different organizations, as shown by Otto et al. (2018). To the best of our knowledge, in the sci-

entific literature currently available, no exact methods that can solve to proven optimality instances

with more than ten customers have been proposed. Several authors (see, e.g., Schermer et al. (2019),

2http://www.ups.com/us/en/services/shipping-services/flight-forward-drones.page
3https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
4https://x.company/projects/wing/
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Hà et al. (2020), Murray & Raj (2020), Poikonen & Golden (2020)) propose Mixed Integer Linear Pro-

gramming (MILP) models to solve small instances of different distribution problems involving a truck

and multiple drones, but the main contributions of these papers lie in the proposal of heuristics and

metaheuristics that are suitable to solve medium and large instances of the corresponding problems.

The problem we investigate can be described as follows. A set of customer locations is given. Each

customer requires the delivery of a single package. Packages are initially located at a depot. A truck

and one or more drones work in tandem to deliver all packages to the customers. The truck and the

drones start and end their route at the depot. The truck can serve customers along the route. At the

depot and at all the customer locations visited by the truck, the drones can take off to fly towards

a customer to serve and can land after delivering a package to a customer. A single customer can

be served by a drone in between each take-off/landing operation. While the drones are airborne, the

truck moves and can fulfill other deliveries. When the drones are not airborne, they are housed on the

truck. We call this problem the Traveling Salesman Problem with Multiple-Drones (TSP-MD). Figure

1 shows a feasible solution of a TSP-MD with seven customers, a single drone, and a truck. The depot

is represented with the rectangle. Customers are represented with circles. White customers are served

by the truck, and grey customers are served by the drone. Straight lines represent the movements of

the truck while dashed lines represent the movements of the drone. The truck leaves the depot while

the drone takes off to serve Customer 2. While the drone is airborne, the truck serves Customers 1

and 3. At Customer 3, the two vehicles rejoin. The drone is launched to serve Customer 5 while the

truck serves Customers 4 and 6. At Customer 6, the drone lands on the truck and is launched to serve

Customer 7. The two vehicles rejoin at the depot, where their route ends.

1
2

3

4

5

6

7

Figure 1: A feasible solution of a TSP-MD instance with seven customers

In this work, we aim at contributing to the literature on exact methods to solve distribution prob-

lems where trucks and drones work in tandem and multiple drones are used. The existing literature

shows that the presence of multiple drones makes the exact solutions of these problems particularly

challenging, so we study the TSP-MD as previously described, and we do not consider other side con-

straints that have been studied in the literature, such as limited drone flying range or the impossibility
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of serving some customers with the drones. As commonly done in the literature, the objective of the

TSP-MD is to minimize the time required to complete all the deliveries and return to the depot. The

main contributions of this paper are: (a) we formulate the TSP-MD with a compact MILP model; (b)

we propose numerous sets of valid inequalities for the compact MILP; (c) we propose an exact solu-

tion method that decomposes the TSP-MD into easier problems and solves each of these problems

with a branch-and-cut method; (d) we present extensive computational experiments that show that

the proposed decomposition method can solve instances with up to 24 customers to proven optimal-

ity.

The rest of the paper is organized as follows. Section 2 provides an overview of the relevant lit-

erature on the TSP-MD. Section 3 formally introduces the TSP-MD. Section 4 presents the compact

MILP formulation for the TSP-MD. In Section 5, we present several families of valid inequalities for

the MILP presented in Section 4. In Section 6, we describe an exact decomposition approach, based

on the MILP and the valid inequalities presented in Sections 4 and 5, to solve the TSP-MD to proven

optimality. Section 7 discusses the computational results achieved by the exact decomposition ap-

proach. Finally, Section 8 summarizes the main insights of our paper and outlines potential future

research avenues.

2. Literature Review

As shown by Macrina et al. (2020), the academic literature on decision-making problems for last-mile

delivery with combined trucks and drones has steadily increased since the seminal paper of Murray

& Chu (2015). For an in-depth analysis of the literature on the topic, we refer the reader to the recent

exhaustive reviews of Otto et al. (2018), Chung et al. (2020), and Macrina et al. (2020). In the next two

sections, we review only the literature on exact solution techniques for last-mile delivery problems

where drones and trucks work in tandem and are synchronized (Section 2.1) and papers investigating

synchronized routing problems with one or more trucks and multiple drones (Section 2.2).

2.1. Exact Solution Techniques

Whereas the literature on heuristic methods to solve drone-related last-mile delivery problems where

drones and trucks work in tandem and are synchronized is rich, few contributions on exact solution

techniques are available. The main contributions, listed in chronological order, are Bouman et al.

(2018), Dell’Amico et al. (2019), El-Adle et al. (2019), Poikonen et al. (2019), Roberti & Ruthmair (2020),

and Vásquez et al. (2020). All of these contributions address problems featuring a single truck and a

single drone but different operational constraints and solution approaches, ranging from dynamic

programming recursions to branch-and-bound, branch-and-cut, and branch-and-price methods.
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Bouman et al. (2018) investigate the Traveling Salesman Problem with Drone (TSP-D), where a

single truck and a single drone are available to serve a set of customers. The TSP-D is the single-

drone version of the TSP-MD. They propose dynamic programming recursions to solve the TSP-D to

optimality and test them on instances with up to 20 nodes. The results indicate that instances with

16 nodes can be solved to proven optimality and that the addition of the restriction that the truck

can visit a limited number of customers while the drone is airborne significantly reduces the solution

time.

Dell’Amico et al. (2019) study the Flying Sidekick TSP introduced by Murray & Chu (2015). They

propose a three-index and a two-index formulation and different sets of valid inequalities that are em-

bedded in branch-and-cut algorithms. These algorithms are tested on the 72 10-customer instances

introduced by Murray & Chu (2015). The results show that the two-index formulation is the better

formulation as it can solve 59 out of the 72 benchmark instances with an average computing time of

less than 20 minutes.

El-Adle et al. (2019) study the TSP-D of Bouman et al. (2018) with some additional features, such

as the battery life of the drone. They illustrate a MILP model with binary variables and present a

combination of valid inequalities, pre-processing techniques, and other bound tightening strategies.

The computational results demonstrate that optimal solutions of instances with up to 24 nodes can

be found and encouraging results can be achieved on larger instances with 28 and 32 nodes.

The TSP-D is investigated by Poikonen et al. (2019), who also consider additional constraints

such as drone battery capacity and incompatibilities between customers and drones. They propose

a heuristic branch-and-bound approach that provides a provably optimal solution of the problem

under some circumstances. At each node of the search tree, a bound corresponding to a potential

order to deliver a subset of packages is computed by solving a dynamic program. Even though the

main contribution of the paper is represented by four heuristics based on branch-and-bound, the

computational results show that instances with ten nodes can be solved to proven optimality.

Another contribution on the TSP-D is owed to Roberti & Ruthmair (2020), who consider a basic

TSP-D and show how to model and address different side constraints, such as drone battery capacity,

incompatibilities between drones and customers, launch and rendezvous times, etc. The authors

present an exact branch-and-price algorithm based on a set-partitioning formulation of the problem,

where the pricing problem is solved by a dynamic programming recursion that builds upon the ng -

route relaxation introduced by Baldacci et al. (2011). Computational results show that benchmark

instances with up to 39 customers can be solved to proven optimality.

Vásquez et al. (2020) propose a MILP formulation for the TSP-D and an exact two-stage decom-

position method. In the first stage, the sequence of customers served by the truck is defined. In the
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second stage, the operations of the drone are defined based on the solution of the first stage. The

authors design a Benders-like decomposition algorithm strengthened by different families of valid

inequalities. The computational results on benchmark instances demonstrate that the optimal so-

lution of instances with up to 25 nodes can be found and that the drone speed strongly affects the

computational performance of the proposed method - the faster the drone, the lower the computing

time of the exact method.

2.2. Solution Approaches for Multi-Drone Problems

The literature on problems featuring multiple drones is diverse both in terms of problem settings

and solution methods. The papers that address problems that are closer to the TSP-MD are owed to

Schermer et al. (2019), Kitjacharoenchai et al. (2020), Murray & Raj (2020), and Poikonen & Golden

(2020). We revise these four contributions in the following.

Schermer et al. (2019) study the Vehicle Routing Problem with Drones and En Route Operations,

where a fleet of vehicles, each equipped with a set of drones, is used to serve a set of customers with

the goal of minimizing the makespan to serve all of them. Drones can take-off and land at particular

points on the arcs that connect the customers. The problem is formulated as a MILP and some valid

inequalities are introduced. However, this model can solve small instances only, so the authors pro-

pose a heuristic method based on Variable Neighborhood Search and Tabu Search to tackle medium

and large-sized instances.

Kitjacharoenchai et al. (2020) introduce a problem that features multiple trucks, each one having

limited capacity and owing multiple drones that can be launched to serve one or multiple customers.

The problem addresses two echelons of delivery: in the first level, trucks are routed from the depot

to serve some customers, and, in the second level, drones perform routes starting and ending at the

trucks. The authors propose a MILP formulation to solve small instances and two heuristics to solve

large-sized instances - a route construction heuristic and a Large Neighborhood Search.

Murray & Raj (2020) develop a MILP formulation for the TSP-MD with additional side constraints.

In particular, they consider that if multiple drones are launched and retrieved at the same customer

location, they must be synchronized in order to avoid collisions. The MILP they propose can solve

small instances only. Therefore, the authors propose a three–phase heuristic approach to solve in-

stances with more than eight customers. First, the set of customers is partitioned into two subsets

(the customers served by the truck, and those served by the drones), and a feasible TSP-tour for the

truck is built. Then, the paths of the drones are added to the TSP-tour. In the third phase, they deter-

mine the correct coordination of drones at each truck node considering launch, recovery, and service

times.
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Poikonen & Golden (2020) consider the k-Multi-visit Drone Routing Problem, where a truck and

multiple drones work in tandem. Each drone is allowed to carry multiple packages whose weight is

taken into account to design the corresponding routes. They propose a constructive heuristic ap-

proach based on the solution of the TSP for the truck and the concept of operation, which is defined

as a set of actions that start with the truck and all the drones being at the same (launching) location

and end with all the drones rejoining the truck.

Even though the literature on solution approaches to solve problems featuring truck(s) and multi-

ple drones working in tandem is richer and richer, to the best of our knowledge, no method is available

to optimally solve instances with more than ten customers. The main contribution of the available

papers lie in the proposition of heuristic and metaheuristic techniques. We aim at partly filling this

gap by proposing a decomposition method based on the branch-and-cut paradigm to solve instances

of the TSP-MD with up to 24 customers.

3. Problem Description

The TSP-MD can be formally described as follows. A complete directed graph G = (V , A) is given. The

vertex set V is defined as V = N ∪ {0,0′}, where N represents a set of n customers to serve and 0 and

0′ are two copies of the depot, indicating the initial and final vertex of the vehicles’ route, respectively

– in the following, we also use the notation N0 = N ∪ {0} and N0′ = N ∪ {0′}. The arc set A is defined as

A = { (0, j ) | j ∈ N }∪{ (i , j ) | i , j ∈ N : i 6= j }∪{ (i ,0′) | i ∈ N }. A truck is located at the depot. The truck is

equipped with m identical drones. The truck and the drones are used to serve all customers. The time

the truck takes to traverse arc (i , j ) ∈ A is indicated by t T
i j , and the time the drones take to traverse arc

(i , j ) ∈ A is indicated by t D
i j . We assume the drones to be faster than the truck, so t D

i j ≤ t T
i j holds for

each arc (i , j ) ∈ A. As commonly done in the literature, we also assume that the triangle inequality

holds for both truck travel times, t T
i j , and drone travel times, t D

i j . We also assume that both truck travel

times and drone travel times are symmetric, i.e., for each arc (i , j ) ∈ A such that ( j , i ) ∈ A, t T
i j = t T

j i and

t D
i j = t D

j i . Each customer can be visited by the truck while some or all drones are airborne and the

others are on-board. As commonly done in the literature, we neglect service times at the customers,

but they can be easily included, if needed, by updating the drones and vehicle traveling times. The

drones have limited carrying capacity, so they can serve a single customer before rejoining the truck.

The drones can take off and rejoin the truck at customer locations and the depot only. While drones

are airborne, the truck is traveling, so a drone cannot take off and land at the same location while

the truck stands still. The goal of the TSP-MD is to find the route of minimum duration to serve all

customers by the truck and the drones while considering the synchronization between the truck and

the drones.
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Figure 2: A feasible solution of a TSP-MD instance with nine customers and three drones

To clarify the definition of the TSP-MD and show how to compute the duration of a route while

considering synchronization among vehicles, Figure 2 shows a feasible solution of a TSP-MD instance

with nine customers and three drones. In this figure, the position of each node is not meant to repre-

sent the real position of the corresponding customer, but nodes are positioned so as to highlight the

path traversed by each vehicle. The truck travels the solid path 0−8−6−9−0′. Numbers close to the

solid arcs are the truck travel times, t T
i j . The first drone traverses the dashed path 0−3−8−7−9−4−0′

and serves Customers 3, 7, and 4. The second drone traverses the dotted path 0−8−5−0′ and serves

Customer 5 - when traveling from 0 to 8, the second drone is on the truck. The third drone traverses

the dash-dotted path 0− 2− 6− 1− 0′ and serves Customers 2 and 1. Numbers above or below the

dashed, dotted, and dash-dotted lines represent the arc travel times, t D
i j . To compute the duration of

the solution, the departure time (Dep.T) at each node visited by the truck has to be computed. We

assume that all vehicles leave the depot at time 0. The departure time from Customer 8 is 10 because

the truck arrives at Customer 8 at time 9 but has to wait for the first drone to rejoin after serving Cus-

tomer 3. The departure time from Customer 6 is 15 because the truck arrives there at time 15 and does

not have to wait for the third drone, which arrives at Customer 6 at time 13. The departure time from

Customer 9 is 19 because the truck arrives there at time 16 but has to wait on the first drone to arrive

after serving Customer 7. Finally the duration of the solution is 35 units because the truck returns to

0′ at time 32, the first drone at time 33, the second drone at time 35, and the last drone at time 33.

4. Compact Formulation

In this section, we introduce a compact MILP to formulate the TSP-MD. This MILP is the basis of the

exact approach that is presented in Section 6.

Let xi j ∈ {0,1} be a binary variable equal to 1 if the truck traverses arc (i , j ) ∈ A (no matter if there

is any drone on-board or all of them are airborne), and let yi ∈ {0,1} be a binary variable equal to 1 if

the truck visits node i ∈ N . Moreover, let us call drone leg a sequence of three nodes 〈i , j ,k〉 (i ∈ N0,
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j ∈ N , k ∈ N0′), where i is the node where a drone takes off from the truck, j is a customer served by

the drone on its own, and k is the node where the drone rejoins the truck; for example, in Figure 2, the

first drone performs three drone legs: 〈0,3,8〉, 〈8,7,9〉, and 〈9,4,0′〉. Let L = {〈i , j ,k〉 | i ∈ N0, j ∈ N ,k ∈
N0′ : i 6= j 6= k } \ {〈0, j ,0′〉 | j ∈ N } be the set of all feasible drone legs, and let zi j k ∈ {0,1} be a binary

variable equal to 1 if one of the drones performs drone leg 〈i , j ,k〉 ∈L to serve customer j . Finally, let

ai ∈ R+ be the departure time of the truck from node i ∈ V (a0′ is actually the maximum arrival time

at 0′ over all vehicles), and let wi ∈ Z+ be a commodity variable representing the number of drones

airborne when the truck leaves node i ∈V . Then, the TSP-MD can be formulated as follows:

t∗ = min a0′ (1a)

s.t.
∑

( j ,i )∈A
x j i =

∑
(i , j )∈A

xi j i ∈ N (1b)

∑
(i , j )∈A

xi j = yi i ∈ N (1c)

∑
(0, j )∈A

x0 j =
∑

(i ,0′)∈A
xi 0′ = 1 (1d)

y j +
∑

〈i , j ,k〉∈L

zi j k = 1 j ∈ N (1e)

yi ≥
∑

〈i , j ,k〉∈L

zi j k +
∑

〈k, j ,i 〉∈L

zk j i +
∑

〈i ,k, j 〉∈L

zi k j

m
+x j i i , j ∈ N : i 6= j (1f)

w0 =
∑

〈0, j ,k〉∈L

z0 j k (1g)

w0′ = 0 (1h)

wi ≤ m
∑

(i , j )∈A
xi j i ∈ N0 (1i)

w0 +
∑

〈 j ,r,s〉∈L

z j r s −
∑

〈0,r, j 〉∈L

z0r j ≤ w j +m(1−x0 j ) j ∈ N (1j)

wi +
∑

〈 j ,r,s〉∈L

z j r s −
∑

〈r,s, j 〉∈L

zr s j ≤ w j +m(1−xi j ) i ∈ N j ∈ N0′ (1k)

a0 = 0 (1l)

ai + (M + t T
i j )xi j +

∑
〈k,i , j 〉∈L

(
M +max

{
t T

k j − t D
ki , t D

i j

})
zki j

+ ∑
〈i , j ,k〉∈L

(M + t D
i j )zi j k +

∑
〈i ,k, j 〉∈L

max
{

t D
i k + t D

k j − t T
i j ,0

} zi k j

m
≤ a j +M (i , j ) ∈ A (1m)

xi j ∈ {0,1} (i , j ) ∈ A (1n)

yi ∈ {0,1} i ∈ N (1o)

ai ∈R+ i ∈V (1p)

zi j k ∈ {0,1} 〈i , j ,k〉 ∈L (1q)
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wi ∈Z+ i ∈V (1r)

The objective function (1a) aims at minimizing the total duration of the route that serves all cus-

tomers. Constraints (1b) are flow conservation constraints of the truck. Constraints (1c) link the arc

variables with the y-variables. Constraints (1d) ensure that the truck leaves from and returns to the

depot. Constraints (1e) guarantee that each customer is served exactly once.

Constraints (1f) ensure that drone legs start and end only at locations visited by the truck. Notice

that the last two terms of the right-hand side are not necessary for the correctness of the constraints.

Indeed, imposing that yi ≥ ∑
〈i , j ,k〉∈L zi j k +∑

〈k, j ,i 〉∈L zk j i , for each i , j ∈ N : i 6= j , is sufficient to

guarantee that a drone leg is selected if and only if its corresponding launching and landing locations

are visited by the truck. If the sum of the last two terms of (1f) is strictly positive, yi must be one

and the first two terms of the right-hand side must be zero. Thus, constraints (1f) is a valid lifting of

yi ≥∑
〈i , j ,k〉∈L zi j k +

∑
〈k, j ,i 〉∈L zk j i .

Constraint (1g) sets w0 equal to the number of airborne drones upon leaving 0. Constraint (1h)

sets w0′ equal to zero to ensure that all drones rejoins the truck upon returning to the depot. Con-

straints (1i) guarantee that the number of airborne drones upon leaving each location visited by the

truck does not exceed the number of available drones. Constraints (1j)-(1k) allow to correctly set the

values of the w-variables. Constraint (1l) sets the departure time upon leaving the depot. Constraints

(1m) set the departure time from each node and act as subtour elimination constraints. Constraints

(1n)-(1r) define the domain of the variables.

Single-Drone Case. Being developed for the TSP-MD, model (1) is also valid for the special case where

there is a single drone (i.e., m = 1). However, in this special case, the n×(n−1) constraints (1f) can be

replaced by the following 2n constraints

yi ≥
∑

〈i , j ,k〉∈L

zi j k i ∈ N (2a)

yi ≥
∑

〈k, j ,i 〉∈L

zk j i i ∈ N (2b)

Constraints (2a) (constraints (2b), resp.) guarantee that the drone can perform a drone leg starting

from (ending at, resp.) a given customer i ∈ N only if customer i is visited by the truck (i.e., yi = 1).

Additional Notation. The following additional notation is used in the rest of the paper. Let A(S) ⊂ A,

S ⊆ N , denote the set of arcs whose endpoints belong to the set S, i.e., A(S) = { (i , j ) ∈ A | i , j ∈ S }; in

other words, A(S) is the set of arcs induced by the set of customers S. Moreover, let A(S1,S2) be the

set of arcs starting from any node of the set S1 ⊂ V and ending at any node of the set S2 ⊂ V , i.e.,
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A(S1,S2) = { (i , j ) ∈ A | i ∈ S1, j ∈ S2 }. We also denote by x(Â) the sum of the x-variables of the arcs

belonging to the set Â ⊆ A, i.e., x(Â) =∑
(i , j )∈Â xi j . Finally, let y(S) be the sum of the y-variables of the

customers of the set S ⊆ N , i.e., y(S) =∑
i∈S yi .

5. Valid Inequalities

Our computational experience about using formulation (1) to solve TSP-MD shows that its linear re-

laxation is as weak as it can be. Indeed, the lower bound provided by the linear relaxation of (1) is 0

in all the test instances we have used. Indeed, the bigM-coefficients in constraints (1m) make it fea-

sible to set all variables a equal to 0 for highly fractional solutions of the x and z variables. Therefore,

in this section, we present different sets of valid inequalities that strengthen the linear relaxation of

formulation (1).

5.1. Minimum Number of Customers to Serve with the Truck

We can observe that, while the truck traverses an arc, m customers can be served with the drones if

all of them are airborne. Moreover, all but the last arc traversed by the truck end at a customer served

by the truck. Therefore, we can compute the minimum number of customers that the truck has to

serve, nT, as nT =
⌈

n−m
m+1

⌉
. The following inequality forces the truck to serve at least nT customers and

is valid for (1):

y(N ) ≥ nT (3)

5.2. Symmetry Breaking

Because of the assumption that both truck and drone travel times are symmetric (see Section 3), we

can observe that every feasible solution of (1) has a corresponding symmetric solution obtained by

traversing its arcs in the opposite direction. The two solutions have the same duration. The following

Symmetry-Breaking Constraints are valid for (1):

• If nT = 1

x0i ≤
n∑

j=i
x j 0′ i ∈ N (4a)

x j 0′ ≤
j∑

i=1
x0i j ∈ N (4b)

Constraints (4) halve the set of feasible solutions of (1) by forcing the index of the first customer

served by the truck not to be greater than the index of the last customer visited by the truck;
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• If nT ≥ 2

x0i ≤
n∑

j=i+1
x j 0′ i ∈ N (5a)

x j 0′ ≤
j−1∑
i=1

x0i j ∈ N (5b)

Constraints (5) force the index of the first customer served by the truck to be strictly lower than

the index of the last customer served by the truck.

Symmetry-breaking constraints (4)-(5) have been introduced in Vásquez et al. (2020).

5.3. Lower Bound to a0′

Schermer et al. (2019) observe that the total duration of any feasible route, a0′ , is bounded from below

by the total travel time of the truck and the average travel time of the drones. Therefore, the following

inequalities are valid for (1):

a0′ ≥ ∑
(i , j )∈A

t T
i j xi j (6a)

m ·a0′ ≥ ∑
〈i , j ,k〉∈L

max
{

t T
i k , t D

i j + t D
j k

}
zi j k (6b)

Valid inequality (6a) can be strengthened by considering (part of) the time the truck has to wait for

the drones. In particular, we lift valid inequality (6a) by considering the average delay, if any, caused

by the drones performing drone legs 〈i∗,k, j∗〉, for a given arc (i∗, j∗) ∈ A, when the truck traverses

arc (i∗, j∗) ∈ A. Figure 2 shows two examples of this case. The first case is when the truck traverses

arc (0,8) (i.e., x08 = 1) and the first drone performs drone leg 〈0,3,8〉 (i.e., z038 = 1); as t D
03 = 4, t D

38 = 6,

and t T
08 = 9, the unit of waiting time given by t D

03 + t D
38 − t T

08 = 4+6−9 = 1 can safely be added to the

right-hand side of (6a). Similarly, another unit of waiting time can be added to the right-hand side of

(6a) by considering the last arc traversed by the truck, (9,0′) and the last drone leg performed by the

first drone, 〈9,4,0′〉.
To strengthen inequality (6a) by considering this waiting time, let us introduce a non-negative

continuous variable di ∈ R+ representing a lower bound to the minimum time the truck has to wait

for the drone(s) after traversing an arc leaving from node i ∈ N0. Moreover, let Li j ⊂ L be the set of

drone legs that start from node i ∈ N0, end at node j ∈ N0′ , and make the truck wait for the drones
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if the truck traverses arc (i , j ) ∈ A, i.e., Li j = {〈i ,k, j 〉 ∈ L | t D
i k + t D

k j > t T
i j }. The following O(|A| + 1)

inequalities can be added to (1) to lift (6a):

a0′ ≥ ∑
(i , j )∈A

t T
i j xi j +

∑
i∈N0

di (7a)

Mi j xi j +
∑

〈i ,k, j 〉∈Li j

t D
i k + t D

k j − t T
i j

min
{
m, |Li j |

} zi k j ≤ di +Mi j yi (i , j ) ∈ A : |Li j | ≥ 1 (7b)

where Mi j is a large enough value that can be computed, for example, as Mi j = maxk∈N
{

t D
i k+t D

k j−t T
i j

}
.

Constraint (7a) lifts inequality (6a) by adding the set of d-variables to its right-hand side. Constraints

(7b) set di , i ∈ N0, equal to the average delay caused by the drones performing drone legs of type

〈i ,k, j 〉 if xi j = 1 (and, consequently, yi = 1). Notice that constraints (7b) are meaningful, for each arc

(i , j ) ∈ A, only if there exists at least one drone leg 〈i ,k, j 〉 that makes the truck waiting on the drones

after traversing arc (i , j ) ∈ A (i.e., only if |Li j | ≥ 1).

By observing that, for each arc (i , j ) ∈ A, the following inequality holds

xi j +x j i +
∑

〈i , j ,s〉∈L

zi j s +
∑

〈s, j ,i 〉∈L

zs j i ≤ 1

inequality (7b) can be lifted as follows

Mi j

(
xi j +x j i +

∑
〈i , j ,s〉∈L

zi j s +
∑

〈s, j ,i 〉∈L

zs j i

)
+ ∑

〈i ,k, j 〉∈Li j

t D
i k + t D

k j − t T
i j

min
{
m, |Li j |

} zi k j ≤ di +Mi j yi

(i , j ) ∈ A : |Li j | ≥ 1 (8)

5.4. Maximum Drone Legs Leaving from a Node

We can establish the following relationship between the number of drone legs 〈i , j ,k〉 ∈L departing

from node i ∈ N0 and the variables wi and yi

∑
〈i , j ,k〉∈L

zi j k ≤ wi i ∈ N0 (9a)

∑
〈i , j ,k〉∈L

zi j k ≤ myi i ∈ N (9b)

Constraints (9a) stipulate that the number of drones airborne wi when the truck leaves node i ∈ N0

is greater than or equal to the number of selected drone legs departing from node i . Constraints (9b)

are on-off constraints stating that one or more drone legs departing from node i ∈ N can be selected

if and only if i is served by the truck (i.e., yi = 1).
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5.5. Relationship between x(V ) and y(N )

We can easily observe that the number of arcs traversed by the truck must be equal to the number of

customers served by the truck plus 1. Therefore, the following inequality holds for (1)

x(V ) = y(N )+1 (10)

5.6. Drone Legs Incompatible with First and Last Truck Arcs

The next two sets of valid inequalities are based on the relationship between the first (or the last) two

arcs traversed by the truck and the drone legs that are incompatible with them. The two following

sets of inequalities are valid for (1)

x0i +xi j + 1

m

∑
〈s,r, j 〉∈L :

s 6=i ,0

zsr j +
z0i j

m
≤ yi + y j i , j ∈ N : i 6= j (11a)

xi j +x j 0′ + 1

m

∑
〈i ,r,s〉∈L :

s 6= j ,0′

zi r s +
zi j 0′

m
≤ y j + yi i , j ∈ N : i 6= j (11b)

Constraints (11a) relate the first two arcs traversed by the truck and the incompatible drone legs

whereas constraints (11b) are about the last two arcs traversed by the truck.

Proposition 1. Inequalities (11) are valid for formulation (1).

Proof. We prove the validity of (11a) by considering all possible cases; the validity of (11b) can be

proven with similar argumentation.

To prove the validity of (11a), we consider four cases determined by all possible values of its right-

hand side:

1. yi = 0 and y j = 0: as the truck does not visit customers i and j , then (a) the truck cannot

traverse arc (0, i ) (i.e., x0i = 0), (b) it cannot traverse arc (i , j ) (i.e., xi j = 0), (c) no drone legs

starting from a node s ∈ N0 \ {0, i } and ending at j can be selected (i.e.,
∑

〈s,r, j 〉∈L : s 6=i ,0 zsr j = 0),

and (d) drone leg 〈0, i , j 〉 cannot be selected. Therefore, whenever yi +y j = 0, the left-hand side

cannot be strictly positive.

2. yi = 1 and y j = 0: as the truck serves customer i (i.e., yi = 1), it can traverse arc (0, i ) (i.e.,

x0i = 1); however, because y j = 0, then (a) the truck cannot traverse arc (i , j ) (i.e., xi j = 0),

and (b) no drone legs ending at j can be selected, so both
∑

〈s,r, j 〉∈L : s 6=i ,0 zsr j and z0i j must

be 0. Therefore, if yi = 1 and y j = 0, the highest value the left-hand side can take is 1, which

corresponds to x0i = 1.
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3. yi = 0 and y j = 1: as the truck does not serve customer i (i.e., yi = 0), it cannot traverse arcs

(0, i ) and (i , j ) (i.e., x0i = 0 and xi j = 0); moreover, because y j = 1, the number of drone legs

ending at j cannot be greater then the number of drones, so
∑

〈s,r, j 〉∈L : s 6=i ,0 zsr j + z0i j ≤ m · y j .

Therefore, if yi = 0 and y j = 1, the highest value the left-hand side can take is 1.

4. yi = 1 and y j = 1: as the truck serves both i and j , we show that the highest value the left-hand

side can take in any feasible solution is 2, which happens in the following three cases:

• x0i = 1 and xi j = 1: as the first two arcs traversed by the truck are (0, i ) and (i , j ), no drone

legs starting at a node different from 0 and i can land at j , so
∑

〈s,r, j 〉∈L : s 6=i ,0 zsr j = 0. Fur-

thermore, as the truck serves i , z0i j must be zero.

• x0i = 1, xi j = 0, and 1
m

∑
〈s,r, j 〉∈L : s 6=i ,0 zsr j = 1: this happens if the first arc traversed by

the truck is (0, i ), j is served by the truck later, and m drone legs ending at j are selected.

However, because x0i = 1, z0i j must be zero, so the left-hand side is equal to 2.

• x0i = 0, xi j = 1, and 1
m

∑
〈s,r, j 〉∈L : s 6=i ,0 zsr j = 1: this happens when the truck does not tra-

verse arc (0, i ), but it traverses arc (i , j ) and m drone legs starting from a node different

from 0 and i and ending at j are selected. Because xi j = 1, so z0i j must be zero, and the

left-hand side is equal to 2.�

5.7. Too-Short Paths Cuts

The idea behind Too-Short Paths Cuts (TSPC) is that, for any subset of customers S ⊂ N such that

|S| < nT, at most |S| xi j variables such that i , j ∈ S ∪ {0,0′}, i 6= j , can be selected; indeed, as the truck

must serve at least nT customers, if more than |S| of these xi j variables are selected, the truck makes

a close path serving less than nT customers.

To formally describe TSPC, let us refer to the fractional solution depicted in Figure 3. The TSP-MD

instance features six customers (n = 6) and a single drone (m = 1). Solid lines show strictly positive

xi j variables, namely, x02 = x23 = x30′ = 1 and x45 = x56 = x64 = 2
3 . The values of the xi j variables

also determine the values of the y-variables, which are y2 = y3 = 1 and y4 = y5 = y6 = 2
3 . Dashed

lines represent strictly positive drone legs, namely, z043 = z053 = z063 = 1
3 , z310′ = 1. Because n = 6 and

m = 1, the truck must visit at least three customer, indeed, nT =
⌈

n−m
m+1

⌉
= 3. By looking at variables

x02, x23, and x30′ (all of which are equal to 1), we can see that they form a close path 0−2−3−0′ that

serves two customers only. Such a path can be cut off by adding inequality x02 + x23 + x30′ ≤ y2 + y3,

which can be lifted as x02 +x03 +x23 +x32 +x20′ +x30′ ≤ y2 + y3.

In general terms, TSPC can be described as follows:

x(S ∪ {0,0′}) ≤ y(S) S ⊂ N : |S| < nT (12)
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Figure 3: An example of a fractional solution featuring a violated Too-Short Path cut for an instance with six customers

(n = 6) and a single drone (m = 1). Solid lines represent strictly positive xi j variables. Dashed lines represent strictly

positive zi j k variables. The violated Too-Short Path cut correspond to the set S = {2,3}

5.8. Lifted Generalized Subtour-Elimination Constraints

Generalized Subtour-Elimination Constraints (GSEC) have been extensively used as valid inequalities

for variants of the TSP where not all customers are to be visited, e.g., in the Undirected Selective TSP

(Gendreau et al. (1998)) and the Orienteering Problem (Fischetti et al. (1998)). GSEC can be stated,

among others, in the following form

x(A(S)) ≤ y(S)− yr S ⊂ N : 2 ≤ |S| ≤ n −2, r ∈ S (13)

As in the TSP-MD, the truck is not supposed to serve all customers, constraints (13) are valid also for

formulation (1). However, constraints (13) can be lifted as follows.

Let nD = n −nT be the maximum number of customers that can be served by the drones alone.

Constraints (13) can be replaced by the following Lifted GSEC (LGSEC)

x(A(S))+ ∑
〈i ,r,k〉∈L :
{i ,k}∩S 6=;

zi r k ≤ y(S)− yr S ⊂ N : 2 ≤ |S| ≤ nD, r ∈ S (14a)

x(A(S)) ≤ y(S)−1 S ⊂ N : nD < |S| < n −2 (14b)

Proposition 2. LGSEC (14) are valid inequalities for formulation (1).

Proof. First, we show the correctness of constraints (14a). To simplify the exposition, let us define
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ζr (S) = ∑
〈i ,r,k〉∈L :
{i ,k}∩S 6=;

zi r k .

Because of (1e), ζr (S)+ yr cannot be greater than 1 in any feasible solution, so we have to consider

two cases:

1. If ζr (S) = 0, constraint (14a) reduces to constraint (13), which is valid for (1);

2. If ζr (S) = 1, then we have x(A(S))+1 ≤ y(S). Because yr = 0 (and x({r }) = 0), we have x(A(S)) =
x(A(S \{r })) and y(S) = y(S \{r }). If we define S′ = S \{r }, constraint x(A(S))+1 ≤ y(S) reduces to

x(A(S′)) ≤ y(S′)−1, which corresponds to the well-known SEC for the set S′ and is valid because

ζr (S) = 1 implies that y(S′) ≥ 1, so y(S′)−1 cannot be negative.

Second, we show the correctness of constraints (14b). Because |S| > nD, then at least one of the

customers of the set S must be served by the truck. Therefore, y(S) cannot be lower than 1 in any

feasible solution. For any feasible TSP-MD solution, y(S)−1 is equal to the number of customers of

the set S served by the truck minus one, which is also the maximum number of arcs of the set A(S)

that can be traversed by the truck without creating subtours. �
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Figure 4: An example of a fractional solution featuring a violated LGSEC (14a) for an instance with nine customers (n = 9)

and three drones (m = 3). The violated LGSEC corresponds to the thick straight lines, the thick dashed lines, the set S =
{3,5,6,7,8,9}, and r = 6

Figure 4 shows an example of a fractional solution that violates an LGSEC constraint (14a). The

instance features nine customers (n = 9) and three drones (m = 3). The fractional solution consists

of the following strictly positive x-variables (represented with solid lines): x01 = x14 = x34 = 0.4, x20′ =
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x39 = x52 = x68 = x75 = x87 = x96 = 0.2, x03 = 0.6, and x40′ = 0.8. Hence, the following y-variables

have strictly positive values: y5 = y6 = y7 = y8 = y9 = 0.2 and y3 = 0.6. Finally, among others, two

z-variables have strictly positive values, namely, z063 = 0.6 and z064 = 0.2 - these are represented with

dashed lines. This fractional solution violates constraint (14a) for the set S = {3,5,6,7,8,9} and r = 6.

Indeed, by looking at the thick solid and dashed lines, we have

x39 +x96 +x68 +x87 +x75︸ ︷︷ ︸
1

+z063︸︷︷︸
0.6

� y3 + y5 + y6 + y7 + y8 + y9︸ ︷︷ ︸
1.6

− y6︸︷︷︸
0.2

which is violated by 0.2. Notice that the corresponding constraint (13) obtained by removing z063

from the left-hand side is not violated.

5.9. Maximum Outgoing Drone Legs Cuts

Maximum Outgoing Drone Legs Cuts (MODLC) limit the number of drone legs that take off within a

given subset of customers S ⊂ N and land at nodes not contained in S. We explain the idea behind

MODLC with the numerical example depicted in Figure 5, which displays a fractional solution of

an instance with six customers (n = 6) and two drones (m = 2). There are nine strictly positive x-

variables (represented with solid lines) in solution, namely, x04, x06, x12, x16, x21, x20′ , x41, x62, and

x60′ ; all these variables take value 0.5. Consequently, the values of the corresponding y-variables are

y1 = y2 = y6 = 1, y4 = 0.5, and y3 = y5 = 0. Moreover, among others, there are three z-variables in

solution (represented with dashed lines), namely, z130′ = z250′ = 1, and z146 = 0.5. It is easy to check

that Too-Short Path cuts (12) and LGSEC (14) are not violated in this fractional solution. Let us now

focus on the subset of grey customers S = {1,2} for which x(S) = x12 + x21 = 1 and y(S) = y1 + y2 = 2.

In any feasible solution where x12 = 1 (or x21 = 1), y1 and y2 must be equal to 1. However, we can also

observe that, if x12 = 1 (or x21 = 1), there can be at most two drone legs that take off at customers 1 or

2 and end at nodes served by the truck after serving 1 or 2. Therefore, the following inequality holds

for (1) and is violated by the current fractional solution:

x12 +x21︸ ︷︷ ︸
1

+ 1

m
(z130′ + z250′ + z146)︸ ︷︷ ︸

1
2 (1+1+0.5)=1.25

� y1 + y2︸ ︷︷ ︸
2

This concept can be generalized for any subset of customers S ⊂ N with the following MODLC:

x(A(S))+ 1

m

∑
〈k,r,s〉∈L :

k∈S, s∉S

zkr s ≤ y(S) S ⊂ N (15)

which state that the sum over all the arcs within the set S (i.e., x(A(S))) plus the number of drone legs

leaving from S and ending outside S divided by m (i.e., 1
m

∑
〈k,r,s〉∈L :

k∈S, s∉S
zkr s) cannot exceed the number
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Figure 5: An example of a fractional solution featuring a violated MODL cut for an instance with six customers (n = 6) and

two drones (m = 2). The violated MODL cut corresponds to the thick solid lines, the thick dashed lines, and the set S = {1,2}

of customers of the set S served by the truck (i.e., y(S)). A similar reasoning can be applied to limit

the number of drone legs that take off outside S and end within S

x(A(S))+ 1

m

∑
〈s,r,k〉∈L :

k∈S, s∉S

zsr k ≤ y(S) S ⊂ N (16)

Valid inequalities (15)-(16) can be further adjusted to account for the x-variables connecting the

set S and the depot as follows:

x(A(S))+x(S, {0′})+ 1

m

∑
〈k,r,s〉∈L :
k∈S, s∈N \S

zkr s ≤ y(S) S ⊂ N (17a)

x(A(S))+x({0},S)+ 1

m

∑
〈s,r,k〉∈L :
k∈S, s∈N \S

zsr k ≤ y(S) S ⊂ N (17b)

MODLC (15)-(17b) are similar to the Crossing Sorties Elimination Constraints (CSEC) and the

Backward Sorties Elimination Constraints (BSEC) proposed by Dell’Amico et al. (2019), who also pro-

pose a lifting of such constraints called Tournament Crossing Constraints and Tournament Backward

Constraints, respectively. The difference between these four families of cuts proposed by Dell’Amico

et al. (2019) and MODLC is that MODLC are defined on subsets of customers whereas CSEC, BSEC,

and their lifted counterparts are defined on paths of arcs traversed by the truck.

19



5.10. Separation Procedures

In this section, we summarize how we separate the valid inequalities previously described for for-

mulation (1). Given a fractional solution (x̂ , ŷ , ẑ , â, ŵ ) of the linear relaxation of (1), let Nε(ŷ) be

the set of customers whose y-variables have values greater than ε in the solution (x̂ , ŷ , ẑ , â, ŵ ), i.e.,

Nε(ŷ) = { i ∈ N | ŷi > ε }.

Valid inequalities (3), (4), (5), (6), (7a), (8), (9), (10), and (11) can be easily separated by inspection.

Our computational experience shows that it is computationally convenient to add all these valid in-

equalities to (1) as constraints already from the beginning. The other valid inequalities (i.e., TSPC

(12), LGSEC (14), and MODLC (15)-(17b)) are exponentially many in the number of customers, so

they are separated in a cutting plane fashion at each node of the search tree and added as global cuts

as follows.

TSPC (12) are separated by inspection for subsets of customers S ⊂ N , |S| < nT, that satisfy two

conditions: (a) the y-variables of all customers of the set S in the incumbent fractional solution are

greater than 0.05 (i.e., S ⊆ N0.05(ŷ)); and (b) at least one of the variables x0i or xi 0′ , with i ∈ S, is at least

0.05 in the incumbent fractional solution, meaning that the truck must either enter the set S straight

from the depot or return to the depot directly from the set S. The number of sets of customers that

satisfy these two conditions is usually low, so the separation of (12) by inspection is computationally

tractable even though better separation procedures could be developed. The most violated too-short

path (12) cut is added (if any).

Whenever no violated TSPC exists, LGSEC (14) are separated by inspection over the subsets of

customers S such that S ⊆ N0.05(ŷ). The number of these sets can be exponentially high, but our

computational experience shows that such a separation is computationally tractable on the instances

we have used and the time spent on the separation of LGSEC is limited when solving formulation

(1) with a branch-and-cut algorithm. However, more clever separation procedures (even potentially

running in polynomial time) can be devised based on the rich literature on algorithms to separate

GSEC (13). Again, the most violated LGSEC (14) cut is added (if any).

As to the separation of MODLC (15)-(17b), we have noticed that they are rarely violated for sets

of customers of cardinality greater than three, so we separate them, by inspection, for subsets of cus-

tomers S that satisfy two conditions: (a) 1 ≤ |S| ≤ 3, and (b) S ⊆ N0.05(ŷ). MODLC (15)-(17b) are

separated only if no violated LGSEC (14) was found, and the most violated MODLC is added (if any).

6. Solving the TSP-MD by Decomposition

Finding an optimal solution of the TSP-MD by solving formulation (1) with the different valid in-

equalities presented in Section 5 is challenging even for instances with 15-20 customers. Therefore,
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in this section, we propose a decomposition method that finds an optimal TSP-MD solution by solv-

ing m +1 MILPs similar to (1), where each MILP is easier to solve than (1), and the overall required

computational effort is usually lower than solving (1) as it is.

The key observation of this decomposition approach is that the set of feasible solutions of the

TSP-MD can be partitioned into m+1 sets, where each index set γ (γ= 0,1, . . . ,m) is characterized by

the fact that exactly γ out of m drones serve at least two customers each. For example, if m = 2, the

feasible TSP-MD solutions can be partitioned into three sets: in the first set of solutions, both drones

serve at least two customers each (i.e., γ= 2); in the second set of solutions, one drone serves at least

two customers, and the other drone serves no more than one customer (i.e., γ = 1); in the third and

last set of solutions, both drones serve no more than one customer each (i.e., γ= 0).

Let t∗(γ) be an optimal solution cost of the TSP-MD where exactly γ (γ= 0,1, . . . ,m) drones serve

at least two customers each and the other m −γ drones serve at most one customer each. Then, the

optimal TSP-MD cost can be expressed as

t∗ = min
{

t∗(γ) |γ= 0,1, . . . ,m
}

In our computational experience, most of the times t∗ coincides with t∗(m). Therefore, in the

following (see 6.3), we describe an exact method that first computes t∗(m) by solving a MILP similar

to (1) (see Section 6.1) and then computes a lower bound to each value t∗(γ), γ = 0,1, . . . ,m − 1, by

solving another MILP derived from (1) (see 6.2).

6.1. Computing t∗(m)

Vásquez et al. (2020) present some properties of the optimal solution(s) of a problem similar to the

TSP-MD but with a single drone. Inspired by these properties, we present some properties of the

optimal solution(s) of the TSP-MD under the assumption that each drone is supposed to serve at

least two customers. We use these properties to derive a MILP to compute t∗(m) by adjusting (1).

Proposition 3. There exists an optimal solution of the TSP-MD where all the drones are airborne when

the truck is moving if the following three conditions hold: (i ) truck travel times, t T
i j , and drone travel

times, t D
i j , satisfy the triangle inequality; (i i ) the truck is not faster than the drones, i.e., t T

i j ≤ t D
i j for

each (i , j ) ∈ A; and (i i i ) each drone serves at least two customers.

Proof. We prove Proposition 3 by showing the example displayed in Figure 6 with seven customers and

a drone. Panel (a) shows a feasible solution involving two drone legs 〈1,6,2〉 and 〈3,7,5〉. The duration

of solution (a), ta , is ta = t T
01+max{t T

12, t D
16+t D

62}+t T
23+max{t T

34+t T
45, t D

37+t D
75}+t T

50′ . Let us assume the two

drone legs 〈1,6,2〉 and 〈3,7,5〉 are replaced by drone legs 〈0,6,3〉 and 〈3,7,0′〉, respectively (see panel

(b)). Because of Conditions (i ) and (i i ), we have t D
06 ≤ t D

01 + t D
16 ≤ t T

01 + t D
16, t D

63 ≤ t D
62 + t D

23 ≤ t D
62 + t T

23, and
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t D
70′ ≤ t D

75 + t D
50′ ≤ t D

75 + t T
50′ , so in the solution of panel (b) the arrival times of the drone at Customer 3

and at the depot 0’ cannot be higher than the corresponding arrival times in the solution of panel (a).

This implies that the duration of solution (b), tb , given by tb = max{t T
01+ t T

12+ t T
23, t D

06+ t D
63}+max{t T

34+
t T

45 + t T
50′ , t D

37 + t D
70′}, cannot be higher than ta .

0 1 2 3 4 5 0’

6 7

(a)

0 1 2 3 4 5 0’

6 7

(b)

Figure 6: Example of a feasible TSP-MD solution where the drones traverse some arcs on the truck (panel (a)) and the

corresponding solution where the drones are always airborne when the truck is moving (panel (b))

In general, whenever a drone performs a drone leg that is preceded or followed by an arc traversed

by the drone on-board of the truck, such a drone leg can be replaced by another drone leg such that

the drone takes off and lands at the same node (in two subsequent drone legs) without increasing the

duration of the whole solution. This is the case no matter how many drones are available. Notice that

this is true if and only if each drone serves at least two customers, as imposed by Condition (i i i ). �

Because of Proposition 3, to compute t∗(m), the following constraints can be added to (1):

myi = wi i ∈ N (18a)

y(N ) ≤ n −2m (18b)∑
〈0, j ,k〉∈L

z0 j k = ∑
〈i , j ,0′〉∈L

zi j 0′ = m (18c)

∑
〈i , j ,k〉∈L

zi j k = ∑
〈k, j ,i 〉∈L

zk j i k ∈ N (18d)

Constraints (18a) state that if customer i ∈ N is visited by the truck, then m drones must be airborne

when the truck leaves i . Constraint (18b) ensures that the truck does not visit more than n − 2m

customers as each drone is supposed to serve at least two customers. Constraints (18c) ensure that

all drones take off and land at the depot at the beginning and the end of the route. Constraints (18d)

are flow conservation constraints for the drones guaranteeing that all drones are airborne when the

truck leaves each served customer.

If constraints (18) are added to (1), because of constraints (18a), the w-variables can be removed
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from the model and constraints (1g)-(1k) become redundant. Therefore, t∗(m) can be computed as

follows:

t∗(m) = min
{

a0′ s.t. (1b)− (1f), (1l)− (1q), (18b)− (18d)
}

(19)

Notice that all valid inequalities introduced in Section 5 are still valid and can be added to (19).

6.2. Computing a Lower Bound to t∗(γ) with γ< m

To compute a lower bound, lb(γ) (γ = 0,1, . . . ,m −1), to t∗(γ), we solve a MILP derived from (19) by

allowing m −γ customers not to be visited at all and γ drones to serve at least two customers each.

The MILP to compute lb(γ) is the following:

lb(γ) =min a0′ (20a)

s.t. (1b)− (1d), (1f), (1l)− (1q), (18d)

y j +
∑

〈i , j ,k〉∈L

zi j k ≤ 1 j ∈ N (20b)

y(N )+ ∑
〈i , j ,k〉∈L

zi j k = n −m +γ (20c)

y(N ) ≤ n −m −γ (20d)∑
〈0, j ,k〉∈L

z0 j k = ∑
〈i , j ,0′〉∈L

zi j 0′ = γ (20e)

Constraints (20b) replace constraints (1e) by stating that every customer is served at most once. Con-

straint (20c) guarantees that n − (m −γ) customers are served. Constraint (20d) replaces constraint

(18b) and ensures that at most n − (m −γ)−2 ·γ= n −m −γ customers are served by the truck. Con-

straints (20e) replace constraints (18c) to ensure that exactly γ drones take off and land at the depot

at the beginning and the end of the route. Moreover, notice that, in constraints (1f) and (1m), m can

be replaced with max
{
1,γ

}
to tighten the formulation.

As to the valid inequalities presented in Section 5, constraints (7a) and (10), are valid for (20)

and can be separated without any changes. Constraints (6) and (9) are valid for (20), too, and can

be separated, but m can also be replaced by γ to tighten the formulation. Constraints (8), (11), and

MODLC (15)-(17b) are also valid for (20), but m can also be replaced by max
{
1,γ

}
. Inequality (3) must

be changed as the minimum number of customers that must be served by the truck if γ drones are

used out of m (let us call such a value nT(γ)) depends on γ and can be computed as nT(γ) =
⌈

n−m
γ+1

⌉
;

thus, constraint (3) is replaced by y(N ) ≥ nT(γ). Similarly, in Symmetry Breaking constraints (4), (5)

and in TSPC (12), nT must be replaced by nT(γ). Finally, in LGSEC (14), nD must be replaced by

n −nT(γ).

23



Optimality Check. In general, lb(γ) is just a lower bound to t∗(γ), and there is no guarantee that the

two values coincide. However, it can be the case that lb(γ) = t∗(γ) and is possible to derive an optimal

solution corresponding to lb(γ) from the optimal solution of (20). We show this case in Figure 7.

1 2 3 4 5

6 7

8

Figure 7: Example of the optimality check on an optimal solution of formulation (20)

The top part of Figure 7 shows an optimal solution of formulation (20) for an instance with eight

customers (n = 8), two drones (m = 2), and γ = 1. Customer 8 is not served in this optimal solution.

The truck serves Customers 1, 2, 3, 4, 5, in this sequence, and the only available drone performs

drone legs 〈0,6,2〉 and 〈2,7,0′〉. Let a∗
1 and a∗

5 be the departure time of the truck from Customers

1 and 5 in this solution. If at least one of the three inequalities t D
08 + t D

85 ≤ a∗
5 , t D

18 + t D
80′ ≤ lb(γ)− a∗

1 ,

t D
08 + t D

85 + t T
50′ ≤ lb(γ) holds, lb(γ) is equal to t∗(γ). Indeed, one of the two drone legs 〈0,8,5〉 and

〈1,8,0′〉 can be added to the solution without affecting the duration of the tour.

In general terms, let (x∗, y∗, z∗, a∗) be an optimal solution of formulation (20) of cost lb(γ). Let

i f and i` be the first and the last customer served by the truck in such a solution. Let a∗
i f

(a∗
i`

, resp.)

be the minimum (maximum, resp.) departure time of the truck from node i f (i`, resp.) such that the

duration of the tour is lb(γ) computed as

a∗
i f
= max

{
t T

0i f
, max
〈0,i ,i f 〉∈L :

z∗
0i i f

=1

{
t D

0i + t D
i i f

}}
a∗

i`
= lb(γ)−max

{
t T

i`0′ , max
〈i`,i ,0′〉∈L :

z∗
i`i 0′=1

{
t D

i`i + t D
i 0′

}}

Moreover, let N̄∗ be the set of m −γ customers that are not served in (x∗, y∗, z∗, a∗). If, for all cus-

tomers i ∈ N̄∗, the following inequality holds

max
{

t D
0i + t D

i i`
−a∗

i`
, t D

i f i + t D
i 0′ − lb(γ)+a∗

i f
,
}
≤ 0,

then lb(γ) = t∗(γ).

6.3. Exact Solution Method

The exact method we propose to solve the TSP-MD consists of the following steps:
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Step 1. Compute an upper bound to t∗. Solve formulation (19) with the addition of constraint y(N ) =
n −2 ·m and the valid inequalities described in Section 5 to compute an upper bound to t∗.

Let ub be such an upper bound.

Step 2. Compute t∗(m). Solve formulation (19) with the addition of the valid inequalities described

in Section 5 and by replacing M with ub. Use the optimal solution of Step 1 to hot-start the

solver.

Step 3. Compute lb(γ) with γ= 0,1, . . . ,m −1. For each value of γ between 0 and m −1, solve formu-

lation (20) with the addition of the valid inequalities presented in Sections 5 and 6.2. If the

corresponding optimal solution does not pass the optimality check described in Section 6.2,

then go to Step 5.

Step 4. Compute t∗. Because t∗(m) and lb(γ), with γ = 0,1, . . . ,m −1, have been computed, and, for

every γ, lb(γ) is equal to t∗(γ), then compute the optimal TSP-MD cost t∗ as

t∗ = min
{

t∗(m), min
{
lb(γ) |γ= 0,1, . . . ,m

}}
.

Return t∗, and stop.

Step 5. Compute t∗ by using formulation (1). Solve formulation (1) with the addition of the valid

inequalities described in Section 5, and by replacing M with ub. Return t∗.

In our computational experience, Step 5 has proved to be necessary only in a few small instances

with nine customers and at least two drones. However, in these cases, the optimal solution is quickly

found by solving (1) because of the small size of the instances.

7. Computational Results

In this section, we discuss the computational results achieved by the exact solution method described

in Section 6, provide managerial insights, and report a sensitivity analysis on key parameters and

components of the proposed solution method. This section is organized as follows. In Section 7.1,

we describe the test instances used in the computational experiments. Section 7.2 summarizes the

results obtained on the baseline TSP-MD test instances we have selected. In Section 7.3, we show how

the speed of the drone affects the performance of the solution method, and we offer some managerial

insight to investigate the importance of the drone speed. Section 7.4 compares the performance of

our exact solution method with the performance of the compact formulation (1) presented in Section

4. Section 7.5 shows how TSPC (12), LGSEC (14), and MODLC (15)-(17b) affect the performance of

the solution method.

Both the exact solution method and the compact formulation (1) are coded in C, compiled with

g++ 7.5.0, and solved with CPLEX 12.8. All experiments are conducted on a single thread of an
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Intel Xeon E3-1245v5 machine running at 3.50 GHz. We use the default parameters of CPLEX, ex-

cept for CPX_PARAM_THREADS (set to one to use a single thread) and CPX_PARAM_EPINT (set to 1e-10

to decrease integrality tolerance). A time limit of two hours is imposed to solve each instance. All

computing times reported in this section are in seconds.

7.1. Test Instances

We use a set of 40 baseline instances with 10, 15, 20, and 25 nodes (ten instances per size) derived from

the instances introduced by Poikonen et al. (2019). The instances are created by randomly locating

the depot and the n customers on a 50-by-50 grid, where node coordinates are uniformly distributed

in the two dimensions. The geographical x-y coordinates of each node i are given as (xi , yi ). As

commonly done in the literature, for each arc (i , j ) ∈ A, we compute truck travel times, t T
i j , according

to the Manhattan metric (i.e., t T
i j = d|xi − x j |+ |yi − y j |e) and drone travel times, t D

i j , according to the

Euclidean metric (i.e., t D
i j =

√
d((xi −x j )2 + (yi − y j )2)αe), where α is a parameter that represents the

ratio between the speed of the truck and the speed of the drones and is set equal to 0.5. Travel times

are rounded up to the nearest integer to ensure that the triangle inequality holds. Each instance is

tested with one, two, and three drones, leading to a baseline set of 120 instances. These 120 instances

are used in Section 7.2. In Section 7.3, where we investigate the importance of parameter α, we use

240 more instances, still derived from the baseline instances, but by setting α= 0.333 and α= 1.

7.2. Computational Results on the Baseline Test Instances

Table 1 summarizes the results achieved by the exact solution method presented in Section 6 on the

baseline test instances described in Section 7.1. The results are grouped by the number of drones

(m = 1,2,3) and size of the instance (n = 9,14,19,24). Each row reports averages over the correspond-

ing ten instances. All the gaps are computed, in percentage, with respect to the best upper bound

available.

Column n indicates the number of customers. Under label Overall, column Opt indicates the

number of instances solved to proven optimality (out of 10), %Gap the average percentage gap, over

the instances not solved to proven optimality, of the best lower bound computed at Step 2, and T the

average computing time over the instances closed to proven optimality. About Step 1, column %UB

reports the average percentage gap of the optimal solution of Step 1, and T indicates the average

total computing time. About Step 2, column %UB reports the average percentage gap of the optimal

solution of Step 2, %Root (%LP, resp.) the average gap of the lower bound at the root node (at the

root node before adding TSPC (12), LGSEC (14), MODLC (15)-(17b), resp.), LGSEC, TSPC, MODLC

the number of cuts added of the corresponding type, T the average total computing time, and %Tsep

the average amount of time spent on separating cuts in percentage over T. About Step 3, Opt shows
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how many times Step 3 provides a solution that is better than the optimal solution of Step 2, and T is

the average computing time. About Step 5, Call indicates how many times Step 5 is called, and T is

the average computing time.

Table 1: Computational Results on the Baseline Test Instances with α= 0.5

Overall Step 1 Step 2 Step 3 Step 5

n Opt %Gap T %UB T %UB %Root %LP LGSEC TSPC MODLC T %Tsep Opt T Call T

(m = 1)

9 10 0.0 1 22.9 0 0.0 8.2 23.5 10 7 29 1 2 0 0 0 0

14 10 0.0 8 31.8 0 0.0 6.5 21.9 32 29 125 8 6 0 0 0 0

19 10 0.0 183 33.0 2 0.0 7.8 25.1 132 71 437 182 21 0 0 0 0

24 9 0.8 1 809 41.0 26 0.0 7.0 25.2 239 145 679 1 783 60 0 0 0 0

All 39 0.8 467 31.9 7 0.0 7.4 23.9 100 61 308 460 21 0 0 0 0

(m = 2)

9 10 0.0 1 16.5 0 0.0 9.8 20.5 12 4 16 1 1 0 0 0 0

14 10 0.0 72 35.6 1 0.0 12.8 28.4 115 26 193 71 2 0 1 0 0

19 8 1.8 815 48.8 4 0.0 11.2 31.3 271 114 617 808 2 0 4 0 0

24 2 6.8 1 787 62.8 28 0.0 7.7 29.8 329 231 783 1 750 6 0 10 0 0

All 30 5.8 361 34.6 3 0.0 11.0 26.6 136 56 287 356 2 0 2 0 0

(m = 3)

9 10 0.0 1 4.9 0 0.0 19.6 14.6 4 1 3 0 1 0 0 1 0

14 10 0.0 46 38.5 1 0.0 13.7 27.5 89 13 113 41 2 0 3 0 0

19 7 5.5 1 370 51.4 5 0.0 14.5 32.3 393 51 555 1 340 1 0 26 0 0

24 1 13.1 4 734 72.6 23 0.0 11.3 38.0 356 137 965 4 662 1 0 49 0 0

All 28 11.2 528 31.0 3 0.0 15.9 24.4 144 23 215 516 1 0 10 1 0

Table 1 shows that the exact method finds an optimal solution for 97 out of the 120 instances,

with an average computing time of less than ten minutes. We can see that increasing the number of

customers and/or drones makes the TSP-MD more difficult to solve; this is due to higher average gaps

(see column %Root) in Step 2. By looking at the difference between the gaps of columns %Root and

%LP, we can also appreciate the significant contribution of separating LGSEC, TSPC, and MODLC

- further details about the effect of adding these cuts are provided in Section 7.5. The right-most

columns of the table show that Step 3 never finds a better solution than Step 2, and Step 5 is necessary

only once (on an instance with nine customers and three drones).

7.3. Computational Results with Different Drone Speeds

In this section, we show how the speed of the drone affects the performance of the exact solution

method and provide some managerial insights on the importance of this parameter.

Tables 2 and 3 summarize the results achieved by the exact solution method on the test instances

when setting α= 0.333 (i.e., drones are three times faster than the truck) and α= 1 (i.e., drones are as
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fast as the truck), respectively. The format of these two tables is the same of Table 1.

Table 2: Computational Results on the Instances with α= 0.333

Overall Step 1 Step 2 Step 3 Step 5

n Opt %Gap T %UB T %UB %Root %LP LGSEC TSPC MODLC T %Tsep Opt T Call T

(m = 1)

9 10 0.0 1 40.4 0 0.0 6.1 22.9 10 7 25 1 2 0 0 0 0

14 10 0.0 6 43.3 0 0.0 6.7 26.1 24 26 88 6 3 0 0 0 0

19 10 0.0 85 47.6 2 0.0 7.0 28.4 90 53 247 84 19 0 0 0 0

24 10 0.0 668 55.3 25 0.0 6.6 26.9 137 114 382 644 63 0 0 0 0

All 40 0.0 190 46.7 7 0.0 6.6 26.1 65 50 186 183 22 0 0 0 0

(m = 2)

9 10 0.0 1 37.7 0 0.0 7.3 17.7 7 3 6 1 1 0 0 0 0

14 10 0.0 15 61.8 1 0.0 10.5 28.0 57 17 94 14 2 0 1 0 0

19 10 0.0 245 71.5 4 0.0 10.9 34.2 171 79 383 239 2 0 2 0 0

24 6 5.9 2 027 80.0 38 0.0 9.2 33.5 281 160 647 1 984 6 0 5 0 0

All 36 5.9 410 60.8 8 0.0 9.5 27.8 112 54 242 401 2 0 2 0 0

(m = 3)

9 10 0.0 1 12.1 0 0.0 15.7 10.2 1 0 1 0 0 1 0 1 0

14 10 0.0 20 67.4 1 0.0 15.3 27.1 56 11 62 17 1 0 2 0 0

19 10 0.0 292 84.4 5 0.0 13.5 34.2 207 29 286 279 2 0 8 0 0

24 3 4.1 1 583 110.1 30 0.0 10.3 35.0 270 78 429 1 533 2 0 19 0 0

All 33 4.1 239 59.6 5 0.0 14.4 24.8 104 19 144 229 1 1 5 1 0

Table 2 shows that 109 instances can be solved to optimality when α = 0.333, i.e., 12 more in-

stances than when α = 0.5, and the average computing time is less than five minutes. Moreover, by

comparing Tables 1 and 2, we can see that all instances with up to 19 customers can be solved to op-

timality when α= 0.333, which is not the case when α= 0.5. As in Table 1, increasing the number of

customers and/or drones makes the instances harder to solve due to higher gaps in Step 2. Step 3 pro-

vides the optimal solution only once, and Step 5 is necessary only on an instance with nine customers

and three drones. All in all, we can conclude that the higher the speed of the drones, the higher the

chance that an instance can be solved to optimality within lower computing times.

Table 3 shows that, when the truck and the drones are equally fast, all instances with up to 14

customers and only nine instances with 19 customers can be solved to optimality, but none of the

instances with 24 customers or 19 customers and at least two drones can be closed. By comparing

these results with Tables 1 and 2, we can further confirm that decreasing the speed of the drones

makes the instances harder to solve. As to the effectiveness of LGSEC, TSPC, and MODLS, and the

results of Steps 3 and 5 on instances with α = 1, we can draw similar conclusions to the ones from

Tables 1 and 2.
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Table 3: Computational Results on the Instances with α= 1

Overall Step 1 Step 2 Step 3 Step 5

n Opt %Gap T %UB T %UB %Root %LP LGSEC TSPC MODLC T %Tsep Opt T Call T

(m = 1)

9 10 0.0 1 1.7 0 0.0 8.3 21.4 14 7 32 1 3 0 0 0 0

14 10 0.0 62 6.5 1 0.0 9.0 21.1 88 44 232 62 12 0 0 0 0

19 9 1.7 3 933 11.1 7 0.0 8.2 21.8 452 116 842 3 926 35 0 0 0 0

24 0 8.0 - - - - - - - - - - - - - - -

All 29 7.5 1 242 6.2 2 0.0 8.5 21.5 176 53 352 1 240 16 0 0 0 0

(m = 2)

9 10 0.0 3 0.3 1 0.0 13.4 25.5 19 10 28 2 2 0 1 0 0

14 10 0.0 488 6.4 4 0.0 12.2 25.0 352 37 417 483 2 0 2 0 0

19 0 8.8 - - - - - - - - - - - - - - -

24 0 15.6 - - - - - - - - - - - - - - -

All 20 12.2 246 3.4 2 0.0 12.8 25.2 185 24 222 242 2 0 1 0 0

(m = 3)

9 10 0.0 4 1.0 1 1.0 13.7 19.2 24 3 9 1 1 3 1 2 1

14 10 0.0 585 3.4 71 0.0 15.0 27.5 345 24 358 495 1 0 20 0 0

19 0 14.2 - - - - - - - - - - - - - - -

24 0 23.1 - - - - - - - - - - - - - - -

All 20 18.7 295 2.2 36 0.2 14.4 23.3 184 13 183 248 1 3 10 2 1

In Figure 8, we show how the average optimal solution cost changes when the number of available

drones and their speed change. In the left panel of Figure 8, we compare the average solution cost

over the 9-customer instances solved to optimality for any combination of values of α = 0.333,0.5,1

and m = 1,2,3; values are ratios over the average cost with m = 1 and α= 1. A similar comparison is

provided in the right panel for instances with 14 customers.

Figure 8 shows that the higher the number of drones and their speed, the lower the optimal solu-

tion costs. When α= 0.5, the optimal solution cost decreases by 17 to 26% compared to when α= 1,

and, when α= 0.333, there is a further decrease of 6 to 10%. Having two drones instead of one allows

to decrease the solution cost by 13 to 21%, and adding a third drone allows to further decrease it by

9-21%. In terms of solution cost, having a single fast drone (with α= 0.333) is similar to having three

slow drones (with α= 1).

7.4. Comparison between the Exact Solution Method and the Compact Formulation

In this section, we compare the performance of the compact formulation (1) (hereafter called CF)

presented in Section 4, when solved with CPLEX with the addition of all the valid inequalities pre-

sented in in Section 5, with the performance of the exact decomposition method (hereafter called

Dec) presented in Section 6.
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Figure 8: Ratios between Average Solution Costs for Different Values of α (1, 0.5, 0.333) and m (1, 2, 3)

As a benchmark set, we use the 40 baseline instances with two drones. Table 4 reports, for both

CF and Dec, the number of instances solved to optimality (Opt), the average computing time (T), and

the average computing time over the instances solved to optimality by both CF and Dec (Tboth).

Table 4: Comparison between CF and Dec on the Baseline Instances with m = 2

CF Dec

n Opt T Tboth Opt T Tboth

9 10 1 1 10 1 1

14 10 647 647 10 72 72

19 5 1 157 1 157 8 815 414

24 2 1 729 1 729 2 1 787 1 787

Table 4 shows that CF and Dec have similar performances on 9-customer instances. However,

the benefits of Dec over CF stand out on larger instances with 14 and 19 customers. Indeed, both

methods can solve all 14-customer instances, but Dec is nine times faster than CF. Moreover, Dec can

solve three 19-customer instances more than CF and is almost three times faster. On 24-customer in-

stances, the two approaches have similar performances. These results indicate that Dec, on average,

outperforms CF.

7.5. Computational Results of the Exact Solution Method without LGSEC, TSPC, and MODLC

This section shows how separating LGSEC, TSPC, and MODLC affects the performance of the exact

solution method. As we have done in Section 7.4, we use the 40 baseline instances with two drones

as a benchmark set.

Table 5 summarises the results obtained by the exact solution method when all the three types
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of cuts are separated (label All Cuts), without LGSEC (no LGSEC), without TSPC (no TSPC), and

without MODLC (no MODLC). Under each of these four labels, column Opt indicates the number

of instances solved to optimality, %Gap the average percentage gap, over the instances not solved to

optimality, of the best lower bound computed at Step 2, and T the average computing time over the

instances solved to optimality.

Table 5: Comparison on the Baseline Instances with m = 2 with and without LGSEC, TSPC, and MODLC

All Cuts no LGSEC no TSPC no MODLC

n Opt %Gap T Opt %Gap T Opt %Gap T Opt %Gap T

9 10 0.0 1 10 0.0 1 10 0.0 1 10 0.0 1

14 10 0.0 72 10 0.0 64 10 0.0 94 10 0.0 170

19 8 1.8 815 6 8.1 1 096 8 5.1 1 071 4 6.5 2 884

24 2 6.8 1 787 1 15.2 2 856 2 6.6 1 403 1 17.7 4 037

All 30 5.8 361 27 13.0 373 30 6.3 411 25 13.2 691

Table 5 shows that, on instances with up to 14 customers, the exact solution method features

similar computational performance with or without cuts. On larger instances with 19 or 24 customers,

removing one of the three families of valid inequalities results in fewer instances solved to optimality,

larger gaps for the open instances, and usually larger computing times to find an optimal solution.

These results illustrate the benefits of separating the three families of valid inequalities.

8. Conclusions and Discussion

In this paper, we have investigated the Traveling Salesman Problem with Multiple Drones (TSP-MD).

We have proposed a compact formulation to model the problem and several sets of valid inequalities

to improve the continuous relaxation of this compact formulation. Finding an optimal solution of

test instances with just 15 nodes might take more than an hour of computing time if the compact

formulation is solved as it is with an off-the-shelf solver. Therefore, we have proposed an exact de-

composition approach that solves the TSP-MD to optimality by decomposing the problem into m+1

simpler problems, where m stands for the number of drones available. This exact approach pro-

vides encouraging results and allows to solve instances with up to 24 customers and three drones in

less than two hours of computing time, more than doubling the size of solvable instances of related

problems with similar approaches from the literature. We have also conducted a sensitivity analy-

sis to shed light on the advantages and computational implications of varying the number of drones

available and their speed. The main insights we have offered are that (a) increasing the number of

drones and their speed can significantly decrease the time to serve all customers and (b) the faster

the drones, the higher the chances that the exact method can find a provably optimal solution.
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Our study has been aimed at investigating the implications and challenges of having multiple

drones in a truck-and-drones distributing setting, so we have focused our attention on a neat prob-

lem, without considering side constraints that arise in real-life applications and have been recently

explored in the scientific literature. We expect that the proposed solution method can be adjusted

to handle many side constraints, such as the flying range of the drones (possibly weight-dependent),

the unavailability of customers to be served by drones, launch and rendezvous times for the drones

to take off and land, etc. As many of such side constraints could be modeled by properly defining the

set of feasible drone legs and the number of variables of the formulation we have proposed would

be limited by these side constraints, we are confident that our exact solution method could provide

comparable performance to those illustrated in our paper on instances of similar size.

We envision several future research directions to extend our study beyond the scope of this pa-

per. First, richer problems with different side constraints could be considered, and the effectiveness

of our solution approach could be investigated. Then, other objective functions, for example taking

environmental considerations into account, could be examined, potentially in a multi-objective op-

timization setting. Finally, uncertainty could be considered to explore settings that are as close as

possible to real-life settings.
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