
VU Research Portal

A decomposition method for finding optimal container stowage plans

Roberti, R.; Pacino, D.

published in
Transportation Science
2018

DOI (link to publisher)
10.1287/trsc.2017.0795

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Roberti, R., & Pacino, D. (2018). A decomposition method for finding optimal container stowage plans.
Transportation Science, 52(6), 1444-1462. https://doi.org/10.1287/trsc.2017.0795

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 27. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303686803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1287/trsc.2017.0795
https://research.vu.nl/en/publications/117208db-148e-4188-9db8-11a2ea56c45c
https://doi.org/10.1287/trsc.2017.0795

This article was downloaded by: [145.108.136.101] On: 21 July 2020, At: 00:53
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Transportation Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

A Decomposition Method for Finding Optimal Container
Stowage Plans
R. Roberti, D. Pacino

To cite this article:
R. Roberti, D. Pacino (2018) A Decomposition Method for Finding Optimal Container Stowage Plans. Transportation Science
52(6):1444-1462. https://doi.org/10.1287/trsc.2017.0795

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2018, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/trsc.2017.0795
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

TRANSPORTATION SCIENCE
Vol. 52, No. 6, November–December 2018, pp. 1444–1462

http://pubsonline.informs.org/journal/trsc/ ISSN 0041-1655 (print), ISSN 1526-5447 (online)

A Decomposition Method for Finding Optimal Container
Stowage Plans
R. Roberti,a D. Pacinob

aDepartment of Information, Logistics, and Innovation, Vrĳe Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands;
bDepartment of Management Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Contact: r.roberti@vu.nl, http://orcid.org/0000-0002-2987-1593 (RR); darpa@dtu.dk (DP)

Received: January 23, 2017
Revised: May 26, 2017
Accepted: July 16, 2017
Published Online in Articles in Advance:
November 1, 2018

https://doi.org/10.1287/trsc.2017.0795

Copyright: © 2018 INFORMS

Abstract. In transportation of goods in large container ships, shipping industries need to
minimize the time spent at ports to load/unload containers. An optimal stowage of con-
tainers on board minimizes unnecessary unloading/reloading movements, while satisfy-
ing many operational constraints. We address the basic container stowage planning problem
(CSPP). Different heuristics and formulations have been proposed for the CSPP, but find-
ing an optimal stowage plan remains an open problem even for small-sized instances. We
introduce a novel formulation that decomposes CSPPs into two sets of decision variables:
the first defining how single container stacks evolve over time and the second model-
ing port-dependent constraints. Its linear relaxation is solved through stabilized column
generation and with different heuristic and exact pricing algorithms. The lower bound
achieved is then used to find an optimal stowage plan by solving amixed-integer program-
ming model. The proposed solution method outperforms the methods from the literature
and can solve to optimality instances with up to 10 ports and 5,000 containers in a few
minutes of computing time.

Funding: This work is part of the DynaStow (Dynamic Programming-based Stowage Planning) project
funded by the Den Danske Maritime Fond. This support is gratefully acknowledged.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2017.0795.

Keywords: column generation • container stowage • dynamic programming • exact methods • maritime logistics • mixed-integer programming

1. Introduction
The use of containers for the transportation of con-
sumer goods has been drastically growing since its
introduction in 1956 (Levinson 2010). Liner shipping
is the transportation of goods in large container ships
that sail the world on fixed routes and schedules. Prior
to the financial crisis in 2009, the booming demand for
containerized transport drove shipping lines to deploy
larger and larger ships that can now carry over 18,000
twenty-foot equivalent units (TEU). In recent years of
economic recovery, the shipping industry is facing a
decrease in demand and an overcapacitated network,
which is now driving freight and charter rates down
(UNCTAD 2015). A reduction in time spent at ports
for loading/unloading is extremely important when
making a profit on marginal costs. With a cargo flow
of approximately 15.4 million TEU just on the Asia–
Europe trade route in 2014, the industry has recog-
nized the need to apply scientific optimization meth-
ods. This is evident from the growing literature in liner
shipping network optimization, speed optimization,
stowage planning, etc.
Stowage planning, which is the focus of this paper,

is the process of assigning containers to positions on
the ship (stowage). The order in which containers are
stowed and their distribution along the ship define the

cost of the plan. The arrangement of the containers can
reduce the time at port by minimizing the number of
unnecessary container moves and by optimizing the
schedule of the loading cranes (quay cranes). Moreover,
it contributes to the total bunker consumption since it
can impact the hydrodynamics of the ship (e.g., trim
optimization).

Finding high-quality stowage plans is hard not only
because of the complexity of the objective function but
also because of the complex set of feasibility require-
ments to satisfy. Until now, the academic focus has
been on developing heuristic methods that have grad-
ually moved from simple capacity allocation problems
(Avriel and Penn 1993; Dubrovsky, Levitin, and Penn
2002; Ambrosino, Sciomachen, and Tanfani 2004) to
handling the complex stability requirements of a ship
(Pacino et al. 2011, 2012). However, the quality of the
implemented solutions is hard to scientifically evaluate
because of the lack of studies on optimal methods and
the unwillingness of the industry to share data.

In this paper, we aim to (partially) fill this gap by
presenting insights and solution methods to solve to
optimality the basic container stowage planning problem
(CSPP) originally defined by Avriel and Penn (1993),
which is one of the first stowage planning problems
that appeared in the literature and can be described as

1444

http://pubsonline.informs.org/journal/trsc/
mailto:r.roberti@vu.nl
http://orcid.org/0000-0002-2987-1593
mailto:darpa@dtu.dk
https://doi.org/10.1287/trsc.2017.0795

Roberti and Pacino: Decomposition Method for Container Stowage Planning
Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS 1445

follows. Containers are stowed on a ship divided into
bays. Each bay consists of multiple stacks, and each
stack is divided into tiers. Each tier can contain a single
container. Moreover, all containers are of the same size,
all stacks have the same number of tiers, and all bays
have the same number of stacks. Therefore, the ship
can be seen as a grid (i.e., a single rectangular bay),
where each column represents a stack and each row
represents a tier.
The ship travels a predefined route of ports, where

containers are loaded and unloaded. Containers can
be accessed only from the top of each stack, and each
container has an origin port and a destination port.
The number of containers to move from each port to
any other port is known in advance; a pair of ori-
gin/destination ports is commonly called a transport.
The ship is empty before loading operations take place
at the first port and after it arrives at the last port. At
each port, containers destined to that port are unloaded
(such unloading operations are called discharges), and
containers destined to the following ports are loaded.
Without loss of generality, it can be assumed that all
unloading operations take place before any loading
operation.
Whenever a container has to be discharged, another

container destined to one of the next ports may be
stowed on top of it: this situation is called overstowage
and requires a shift (i.e., the unloading and reload-
ing of the container on top). Two types of shifts may
occur: mandatory and nonmandatory. Mandatory shifts
take place whenever there is overstowage. Nonmanda-
tory shifts take place if a container is unloaded and
reloaded at a port to avoid overstowage.
An example of mandatory and nonmandatory shifts

is provided in Figure 1. The left panel shows two stacks
with five tiers each and the containers stowed upon
arriving in Port 4 (each container is identified by its
destination port). Containers destined to Port 4 must
be discharged, and four containers destined to Port 6
must be loaded. The layout of the containers in the
two stacks is shown in the right panel; six shifts have
taken place for the containers destined to Port 5: four
mandatory shifts in the stack on the left and two non-
mandatory shifts in the stack on the right.

In the CSPP, both mandatory and nonmandatory
shifts are allowed. Note that nonmandatory shifts are
sometimes called voluntary in the literature; nonethe-
less, in real-life applications, voluntary shifts refer to

Figure 1. An Example of Mandatory and Nonmandatory Shifts

shifts performed by terminal operators that were not
planned in advance, so we prefer to use the term non-
mandatory.

The goal of the CSPP is to find a stowage plan where
each container is transported from its origin port to its
destination port and the number of shifts is minimized.

The CSPP is a simplified version of stowage plan-
ning problems encountered in practice, where, forex-
ample, containersmay have different sizes andweights,
stacks may have a different number of tiers, and sta-
bility constraints on the distribution of weight along
the ship must be taken into account. In spite of these
simplifications, the CSPP has features that are common
to all real-life stowage planning problems, so effective
solution methods for the CSPP can be the basis of new
approaches for solvingmorecomplex stowageplanning
problems. Although several exact and heuristic meth-
ods for the CSPP can be found in the literature, solv-
ing to optimality large-scale CSPP instances using these
methods is still out of reach even with today’s technol-
ogy. Therefore, this paper provides more insight on the
CSPP and on solving it to optimality. In particular, the
main contributions of this paper are the following:

• By extending previous results from the literature,
we derive some properties on the transport matrix
guaranteeing that a strictly positive number of shifts
must take place and propose a combinatorial lower
bound on the minimum number of shifts.

• We introduce a novel mixed-integer programming
(MIP) formulation for the CSPP, based on two sets of
exponentially many variables, whose linear relaxation
provides strong lower bounds.

• We illustrate a lower bounding procedure based
on stabilized column generation (CG) and multiple
heuristic and exact pricing algorithms to solve the lin-
ear relaxation of the new formulation.

• We describe a solution method combining the
lower bound from the bounding procedure with a
compact MIP model to determine an optimal stowage
plan.

• We computationally prove that the proposed solu-
tion method can provide an optimal stowage plan with
no shifts on all test instances with up to 10 ports and
5,000 TEU from the literature in a few minutes of com-
puting time.

• We generate a new set of test instances, where
shiftsmust take place, and show that they are computa-
tionally harder, but the proposed solution method can

Roberti and Pacino: Decomposition Method for Container Stowage Planning
1446 Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS

still solve instances with up to 10 ports and 5,000 TEU,
performing significantly better than the MIP models
from the literature.
The paper is organized as follows. Section 2 reviews

the literature about stowage planning. The CSPP is for-
mally introduced in Section 3. A novel mathematical
model is illustrated in Section 4. Section 5 provides two
MIP models to formulate the pricing problems of the
variables of the new formulation. Section 6 describes
the lower bounding procedure, and Section 7 illus-
trates the procedure for finding an optimal stowage
plan. Computational results are reported in Section 8.
Finally, some conclusions and future research direc-
tions are outlined in Section 9.

2. Literature Review
Literature on stowage planning is very diverse, in
terms of both problem definitions and solution ap-
proaches. The lack of a common benchmark and the
unwillingness from the industry to share data could be
cited as probable causes. The literature can be roughly
divided into twomajor groups: thoseworks addressing
the CSPP studied in this paper and those that include
a rich set of characteristics.

2.1. Literature on the CSPP
Solution methods for the CSPP have been presented by
Avriel and Penn (1993), Avriel et al. (1998), Dubrovsky,
Levitin, and Penn (2002), and Ding and Chou (2015).
Avriel and Penn (1993) were the first to propose a
binary linear formulation for the CSPP; they used two
sets of variables, the first one with five indexes (three
for the ports, one for the tiers, and one for the stacks)
and the second with three indexes (for each port,
each tier, and each stack). As the number of variables
easily grows with the size of the instance, they also
proposed a heuristic method based on applying the
proposed binary linear model on a reduced transporta-
tion matrix. Avriel et al. (1998) presented the suspen-
sory heuristic (a dynamic slot-assignment scheme) and
Dubrovsky, Levitin, and Penn (2002) a genetic algo-
rithm with a compact encoding for the same problem.
A different binary formulation has recently been pro-
posed by Ding and Chou (2015), which is reported to
solve in 10s of minutes small-size problems with seven
ports, six tiers, and 150 stacks; however, the core of the
contribution is a novel placement heuristic that gener-
ally performs better than the suspensory heuristic.
The complexity of the CSPP was addressed by

Aslidis (1990), Avriel, Penn, and Shpirer (2000), and
Tierney, Pacino, and Jensen (2014). Aslidis (1990) pre-
sented a polynomial-time algorithm for solving the
CSPP with a single column. Avriel, Penn, and Shpirer
(2000) studied its connection with problems of color-
ing a circle graph and proved that the problem is NP-
complete. Tierney, Pacino, and Jensen (2014) presented

a polynomial-time algorithm for the CSPP with fixed
stacks and tiers, demonstrating that the combinatorial
complexity is not rooted in the number of transported
containers; moreover, they showed that a version of the
problem where tiers are abstracted away continues to
be NP-hard.

2.2. Literature on Rich Stowage Planning Problems
Rich problem definitions tend to include various com-
binations of stowage requirements. Focusing on a sin-
gle port problem with heuristic stability rules and a
mixture of container types, Ambrosino, Sciomachen,
and Tanfani (2004) proposed a binary formulation for
the master bay planning problem (MBPP). The problem
is solved using a heuristic preprocessing procedure,
which is then extended to a three-phase heuristic by
Ambrosino, Sciomachen, and Tanfani (2006) and then
further combined with a tabu search by Ambrosino
et al. (2009). The relation between the MBPP and the
3-Dimensional Bin Packing Problem is studied by Scio-
machen andTanfani (2003, 2007), where the ship is seen
as the only available bin. A constraint programming
model andaconstraint-based local searchprocedure for
a single bay stowage can also be found in Delgado et al.
(2012) and Pacino et al. (2012), respectively.

The first rich multiport stowage planning model
was presented by Botter and Brinati (1992); the devel-
oped binary formulation was too complex, so a tree
search procedure that could solve instances with four
ports and 40 TEU was implemented. The most suc-
cessful heuristics are based on a hierarchical decom-
position of the problem where a master planning phase
distributes containers to sections of the vessel and
successively a slot planning phase assigns containers
to those sections. Examples of such decompositions
can be found in Wilson and Roach (1999), Kang and
Kim (2002), Pacino et al. (2011), Ambrosino, Paolucci,
and Sciomachen (2017), and Ambrosino, Paolucci, and
Sciomachen (2015). All of them proposed a mathemat-
ical formulation for the first phase and a heuristic for
the second phase. A study on the linearization of com-
plex vessel stability calculations is also presented in
Pacino and Jensen (2013).

3. Problem Definition
In this section, we formally introduce the CSPP along
with the notation used throughout the paper and
report some interesting properties that can be found in
the literature.

As previously noted, the ship can be seen as a grid.
We denote with C the set of stacks (|C | � c̄) and with R
the set of tiers (|R | � r̄), which correspond to the
columns and the rows of the grid, respectively. Tiers
are numbered from 1 to r̄ from bottom to top. Let R− be
the set of all tiers excluding the top one (i.e., R− � {1, 2,

Roberti and Pacino: Decomposition Method for Container Stowage Planning
Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS 1447

. . . , r̄ − 1}). The ship sequentially visits the ordered set
of ports P � {1, 2, . . . , n} from 1 to n.

Let ti j be the number of containers originating from
port i and destined to port j, with 1 ≤ i < j ≤ n (ti j � 0
if i ≥ j), and let T � [ti j] ∈ �n×n

+
be the transportation

matrix. Moreover, let T be the set of all transports (i.e.,
T� {(i , j): i , j ∈P, ti j > 0}. A container destined to Port j,
no matter its origin port, is called a j-container. For the
sake of brevity, the subset of ports {i , i + 1, . . . , j}, with
1 ≤ i < j ≤ n, is indicated with P j

i . Moreover, let T̂ �

{(i , j): i ∈ Pn−1
1 , j ∈ Pn

i+1} be the set of all pairs of ports
(i , j)with i < j, let n Cont�∑

(i , j)∈T ti j be the number of
containers transported (also equal to the total number
of discharges), and let t̂i j be the number of j-containers
to stow on board upon leaving Port i (i.e., t̂i j �

∑
k∈P i

1
tk j),

for each (i , j) ∈ T̂.
The transportationmatrixT is feasible if all containers

can be stowed on board upon leaving each port i ∈Pn−1
1 ,

that is, if ∑n
j�i+1 t̂i j ≤ r̄ · c̄.

Ding and Chou (2015) reported and proved the fol-
lowing properties of the CSPP.

Property 1. If n ≤ 3, for any given r̄, c̄, and T, there always
exists a stowage plan with no shifts.

Property 2. If r̄ � 1, for any given n, c̄, and T, all stowage
plans lead to no shifts.

Property 3. If n ≥ 4 and r̄ ≥ 2, for any given c̄, there
always exists a transportation matrix T such that shifts are
inevitable.

In particular, Property 3was proven on the following
transportation matrix:

T�

0 1 c̄ · r̄ − 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,
where n � 4, t12 � 1, t13 � c̄ · r̄ − 1, and t24 � 1. A trans-
portation matrix T where shifts are inevitable if n > 4
can easily be derived by extending the previous one. In
Section 6.2, we build on Property 3 to compute a combi-
natorial lower bound on the optimal number of shifts.
A transportation matrix T is defined as full-loading

if the ship is always full upon leaving each port (i.e.,∑n
j�i+1 t̂i j � r̄ · c̄, for each i ∈ Pn−1

1); otherwise, T is said to
be nonfull loading. Clearly, a full-loading transportation
matrix is also feasible. Ding and Chou (2015) showed
that a nonfull-loading transportation matrix T′ can be
transformed into a full-loading transportationmatrix T
without affecting the number of shifts in the optimal
solution as follows: ti j � t′i j if j , i + 1, and ti j � t′i j + r̄ ·
c̄ −∑i

k�1
∑n

j�i+1 t′k j if j � i + 1. Therefore, without loss of
generality, we consider full-loading matrices only.
In the remainder of the paper, the symbols “∧,”

“∨,” and “mod” indicate the logical-and, logical-or,

Table 1. Notation Used Throughout the Paper

Symbol Meaning

n Number of ports to visit
P Set of ports P � {1, . . . , n}
P j

i Subset of ports from i to j with i < j,
i.e., P j

i � {i , i + 1, . . . , j}
C Set of stacks
c̄ Number of stacks c̄ � |C |
R Set of tiers
r̄ Number of tiers per stack r̄ � |R |
R− Set of tiers excluding the top one,

i.e., R− � {1, 2, . . . , r̄ − 1}
T Transportation matrix
ti j Transport from Port i to Port j with 1 ≤ i < j ≤ n
T Set of transports, i.e., T� {(i , j): i , j ∈ P, ti j > 0}
T̂ Set of pairs of ports (i , j)with 1 ≤ i < j ≤ n
t̂i j Number of j-containers to stow on board upon leaving

Port i with (i , j) ∈ T̂
n Cont Total number of containers to transport along the route

and modulo operation, respectively, and bold symbols
represent vectors or matrices. Moreover, the notation
introduced thus far is summarized in Table 1.

4. A Novel Mathematical Formulation
This section introduces a novel mathematical formula-
tion of the CSPP. It is based on two sets of exponentially
many variables. The first set corresponds to stack plans,
which define how containers stowed in a given stack
are moved while visiting the different ports. The sec-
ond set corresponds to port layouts, which indicate how
containers are stowed on the ship upon leaving a given
port. The linear relaxation of the formulation provides
strong lower bounds (as will be shown in Section 8) but
needs CG to be solved. An effective lower bounding
procedure will be presented in Section 6.

Let S be the index set of all feasible stack plans for
any stack c ∈ C, where each stack plan s is represented
by an r̄ |T̂|-dimensional vector es ∈ {0, 1} r̄ |T̂| , where each
element e s

i jr ∈ {0, 1} indicates if, upon leaving Port i,
exactly r j-containers are stowed in the stack (if so,
e s

i jr � 1). The cost, c̃s , of stack plan s ∈ S is the mini-
mum number of unloading operations (i.e., discharges
plus mandatory and nonmandatory shifts) required to
stow res

i jr j-containers in the stack upon leaving port i
(for each (i , j) ∈ T̂ and each r � 1, . . . , r̄). A stack plan s
is feasible if, upon leaving each port i ∈ Pn−1

1 , exactly r̄
containers are stowed into it (i.e.,∑n

j�i+1
∑

r∈R res
i jr � r̄ for

each i ∈ Pn−1
1).

An example of a stack plan is provided in Figure 2.
A stack plan shows which containers are stowed in a
given stack upon leaving each port from Port 1 to Port
n − 1. The figure shows an example of a feasible stack
plan s for an instance with five ports and six tiers per
stack. The cost c̃s of this stack plan is 17 because of two
discharges in Port 2, four discharges and two manda-
tory shifts in Port 3, three discharges in Port 4, and six

Roberti and Pacino: Decomposition Method for Container Stowage Planning
1448 Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS

Figure 2. An Example of a Stack Plan

3

3

3

3

2

2

Port 1

3

3

3

3

4

4

2

5

5

5

4

4

4

3

5

5

5

5

5

5

4

discharges in Port 5; the stack plan is represented as
e s

122 � e s
134 � e s

234 � e s
242 � e s

343 � e s
353 � e s

456 � 1 and all other
elements e s

i jr equal to 0.
Let Li be the index set of all feasible port layouts for

port i ∈ Pn−1
1 , where each port layout l is represented by

an r̄ |Pn
i+1 |-dimensional vector ail ∈ �r̄ |Pn

i+1 |
+

, where each
element a il

jr ∈ �+ indicates the number of stacks that,
upon leaving port i, contain r (1 ≤ r ≤ r̄) j-containers.
A port layout l ∈ Li is feasible if all j-containers are
stowed on board (i.e., ∑

r∈R ra il
jr � t̂i j for each port

j ∈ Pn
i+1).

An example of a port layout is provided in Figure 3.
A port layout shows how containers are stowed in the
different stacks upon leaving a given port. The figure
illustrates an example of a feasible port layout l for
Port 1 for an instance with five ports, five stacks, six
tiers per stack, and transports t12 � 5, t13 � 6, t14 � 7,
t15 � 12; the port layout is represented as a1l

22 � 1, a1l
23 � 1,

a1l
33 � 2, a1l

41 � 1, a1l
46 � 1, a1l

53 � 2, a1l
56 � 1 and all other

elements a1l
jr equal to 0.

Let xs ∈ �+ be a nonnegative integer variable repre-
senting the number of stacks implementing stack plan
s ∈S over the route, and let yil ∈ {0, 1} be a binary vari-
able equal to 1 if port layout l ∈ Li of port i ∈ Pn−1

1 is
selected (0 otherwise). The CSPP can be formulated as

zRP � min
∑
s∈S

c̃s xs (1)

s.t.
∑
l∈Li

yil ≥ 1, i ∈ Pn−1
1 , (2)∑

s∈S
e s

i jr xs ≥
∑
l∈Li

a il
jr yil , (i , j) ∈ T̂, r ∈ R, (3)

xs ∈ �+ , s ∈S, (4)
yil ∈ {0, 1}, i ∈ Pn−1

1 , l ∈Li . (5)

Figure 3. An Example of a Port Layout

5

5

5

4

2

2

5

5

5

3

3

3

3

3

3

2

2

2

4

4

4

4

4

4

5

5

5

5

5

5

The objective function (1) aims to minimize the total
number of unloading operations in the selected stack
plans. Constraints (2) require selecting at least one port
layout for each port i ∈ Pn−1

1 . Constraints (3) link vari-
ables x and y by guaranteeing that, if in the selected
port layout for port i there are a il

jr columns contain-
ing r j-containers, then at least a il

jr stack plans contain-
ing r j-containers are also selected. Constraints (4)–(5)
ensure integrality of the decision variables.

Note that constraints (2)–(3) will be tight at any opti-
mal solution of (1)–(5). Because of the exponential size
of both sets of variables, CG is needed to solve the lin-
ear relaxation of formulation (1)–(5), and having (2)–(3)
in the form of inequalities halves the feasible space of
dual variables, thus generally improving the conver-
gence of solution methods based on CG.

Moreover, the formulation could arguably be ex-
tended to rich variants of the CSPP by adding some
stack-related and port-related constraints to the de-
finition of feasible stack plans and port layouts,
respectively.

In Sections 5–7, we describe the different ingredi-
ents that allow to find an optimal CSPP solution in two
subsequent steps. In the first step, a lower bound LB
on the minimum number of unloading operations, cor-
responding to the optimal solution cost of the linear
relaxation of formulation (1)–(5), is computed by CG.
In the second step, an optimal CSPP is found by solving
one of the twoMIPmodelswith a general-purposeMIP
solver. The first MIP model (described in Section 7.1)
is used to find CSPP solutions with no shifts. The sec-
ond MIP model (described in Section 7.2) allows shifts
in a small subset of stacks. The choice between which
of the two MIP models to use is based on the lower
bound LB computed in the first step: if LB � n Cont,
then a stowage plan with no shifts is likely to exist, so
the first MIP model is selected; otherwise (i.e., if LB >
n Cont), at least LB− n Cont shifts are necessary, so the
second MIP model is selected and shifts are allowed in
LB− n Cont stacks only.
In the first step, to compute lower bound LB by

CG, two pricing problems (for the stack plans and
for the port layouts) have to be solved at each itera-
tion. We introduce an MIP model to solve the pricing
problem for stack plans in Section 5.1, and an MIP
model to solve the pricing problem for port layouts
in Section 5.2. Because it would be time-consuming
to solve both pricing problems via these MIP models
at each iteration, we also introduce two heuristic pro-
cedures based on dynamic programming to generate
stack plans (see Sections 6.4.1–6.4.2) and a heuristic
procedure to generate port layouts (see Section 6.4.3).
We also describe a combinatorial lower bound (see Sec-
tion 6.2) that can be used to limit the number of iter-
ations of CG, and a stabilization technique (see Sec-
tion 6.3) to limit degeneracy of the dual variables.

Roberti and Pacino: Decomposition Method for Container Stowage Planning
Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS 1449

5. Solving the Linear Relaxation of the
New Formulation

We solve the linear relaxation of the formulation (1)–(5)
via CG. There are two pricing problems: one for stack
plans and another for port layouts. In this section, we
formulate these twopricingproblems asMIPproblems.

The goal of CG is to solve the linear relaxation of
(1)–(5) obtained by replacing constraints (4) with xs ≥ 0
(s ∈S) and constraints (5) with yil ≥ 0 (l ∈Li , i ∈Pn−1

1)—
note that constraints yil ≤ 1 are redundant and can
be omitted. Hereafter, we call this problem the master
problem (MP), and we denote its optimal value by zMP.
Because of the size of the sets S andLi , CG works on a
restricted master problem (RMP) containing small subsets
Ŝ ⊆ S and L̂i ⊆Li of variables of the MP. The optimal
value of the RMP is denoted by zRMP.

Let ui ∈ �+ be the dual variable associated with con-
straint (2) for port i ∈ Pn−1

1 , and vi jr ∈ �+ be the dual
variable of constraint (3) for the pair of ports (i , j) ∈ T̂
and number of tiers r ∈ R. The dual (hereafter called
MD) of the RMP reads as follows:

max
n−1∑
i�1

ui

s.t.
∑
(i , j)∈T̂

∑
r∈R

e s
i jr vi jr ≤ c̃s s ∈ Ŝ,

ui −
n∑

j�i+1

∑
r∈R

a il
jr vi jr ≤ 0, i ∈ Pn−1

1 , l ∈ L̂i ,

ui ∈ �+ , i ∈ Pn−1
1 ,

vi jr ∈ �+ , (i , j) ∈ T̂, r ∈ R.

At each iteration of a basic CG procedure, the RMP is
solved, the optimal dual variables (u,v) are retrieved,
and the pricing problems for stack plans and for port
layouts are solved to find the least-cost variables of the
MP. If such columns have a negative reduced cost, they
are added to the RMP, and the process is repeated. The
procedure stops as soon as both pricing problems do
not return any negative reduced cost columns. The two
pricing problems can be formulated and solved as MIP
problems as illustrated next.

5.1. An MIP Model to Price Out Stack Plans
The pricing problem for stack plans can be formulated
as an MIP with the following three sets of decision
variables: αi jr ∈ {0, 1}, which equals 1 if, upon leaving
port i ∈ Pn−1

1 , a j-container (j ∈ Pn
i+1) is stowed in tier

r ∈ R; βi jr ∈ {0, 1}, which equals 1 if, upon leaving port
i ∈ Pn−1

1 , r j-containers (1 ≤ r ≤ r̄ , j ∈ Pn
i+1) are stowed

in the stack; and ξir ∈ {0, 1}, which equals 1 if the con-
tainer stowed in tier r ∈ R upon leaving port i ∈ Pn−1

1 is
unloaded in port i + 1. Then, the pricing problem for
stack plans can be formulated as follows:

min
{ n−1∑

i�1

∑
r∈R

ξir −
∑
(i , j)∈T̂

∑
r∈R

vi jrβi jr

}
(6)

s.t.
∑
(i , j)∈T̂

αi jr � 1, i ∈ Pn−1
1 , r ∈ R, (7)∑

r∈R
αi jr �

∑
r∈R

rβi jr , (i , j) ∈ T̂, (8)∑
(i , k)∈T̂: k, j

βik r̄ +
∑
r∈R

βi jr ≤ 1, (i , j) ∈ T̂, (9)

ξir ≥ αi jr − αi+1, jr , (i , j) ∈ T̂, r ∈ R, (10)
ξir ≤ ξi , r+1 , i ∈ Pn−1

1 , r ∈ R− , (11)
βi jr � 0, (i , j) ∈ T̂, R 3 r > t̂i j , (12)
αi jr , βi jr ∈ {0, 1}, (i , j) ∈ T̂, r ∈ R, (13)
ξir ∈ {0, 1}, i ∈ Pn−1

1 , r ∈ R. (14)

The objective function (6) aims to minimize the re-
duced cost of the generated stack plan, given by the
number of unloading operations minus the associated
dual variables v. Constraints (7) stipulate that exactly
one container must be stowed in tier r ∈R upon leaving
port i ∈ Pn−1

1 .
Constraints (8) establish the link between α and β

variables: βi jr is equal to 1 if r j-containers are stowed
in the stack upon leaving port i. Constraints (9) ensure
that at most one of the βi jr variables associated to the
pair of ports (i , j) ∈ T̂ is equal to 1. For example, let
us assume that, upon leaving Port 1, three 2-containers
are stowed in the stack, thusmeaning that∑r∈R α12r � 3.
Variable β123 � 1 must be set equal to 1; this is modeled
with constraint (8) (i.e.,∑r∈R α12r �

∑
r∈R rβ12r) and with

constraint ∑r∈R β12r ≤ 1. Nevertheless, ∑r∈R β12r ≤ 1 can
be lifted by adding the first summation of constraint (9)
(i.e., ∑

(i , k)∈T̂: k, j βik r̄) because, as soon as the stack is
filled up with r̄ containers destined to one of the ports
k ∈ Pn

i+1, k , j, then no j-containers can be stowed in the
stack (i.e., ∑(i , k)∈T̂: k, j βik r̄ � 1 and ∑

r∈R βi jr � 0).
Constraints (10) force variable ξir to be equal to 1

whenever the container stowed in tier r upon leaving
port i ∈ Pn−1

1 is unloaded in port i + 1, notwithstanding
its destination port. For example, consider variable ξ21,
which is equal to 1 if the container stowed in Port 2 in
tier 1 is unloaded in Port 3. Because of constraints (7),
one of the variables α2 j1, with j ∈ Pn

3 , must be equal
to 1. Let us assume that α241 � 1, meaning that a 4-
container is stowed in tier 1 upon leaving Port 2. If
this 4-container is unloaded in Port 3, then α341 � 0,
thus setting ξ21 equal to 1 (ξ21 ≥ α241 − α341 � 1 − 0).
Otherwise, if the 4-container is not unloaded in Port 3,
then α341 � 1, and ξ21 � 0 (ξ21 ≥ α241 − α341 � 1− 1).
Constraints (11) guarantee that, if the container

stowed in tier r ∈ R upon leaving Port i ∈ Pn−1
1 is

unloaded in port i + 1, then all containers stowed on
top of it are unloaded as well. Constraints (12) set vari-
ables βi jr equal to 0 if the total number of j-containers
originated from Port 1 to i (i.e., t̂i j), with (i , j) ∈ T̂, is
less than r ∈ R. Integrality on the decision variables is
imposed with constraints (13)–(14).

Roberti and Pacino: Decomposition Method for Container Stowage Planning
1450 Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS

The minimum reduced cost stack plan s ∈ S is
defined as e s

i jr � β∗i jr for each (i , j) ∈ T̂ and each r �

1, . . . , r̄, where β∗ is the optimal solution of (6)–(14).

5.2. An MIP Model to Price Out Port Layouts
Let Hi be the index set of all feasible stack patterns for
port i ∈ Pn−1

1 , where each stack pattern h ∈ Hi is a sub-
set of r̄ containers destined to ports i + 1, . . . , n that
can be stowed, with no overstowage, in a single stack.
Each stack pattern h ∈ Hi is represented by an (n − i)-
dimensional vector wh ∈ �n−1

+
such that ∑n

j�i+1 wh
j � r̄

and wh
j ≤ t̂i j for each j ∈ Pn

i+1, where wh
j is the number

of j-containers stowed in the stack pattern.
Let χih ∈ �+ be a nonnegative integer variable repre-

senting the number of stacks implementing stack pat-
tern h ∈ Hi in port layout of Port i ∈ Pn−1

1 , and let dih
be the reduced cost of stack pattern h ∈ Hi computed
as dih �

∑
j∈Pn

i+1 : wh
j >0 vi j wh

j
. Then, the pricing problem for

port layouts for a given port i ∈ Pn−1
1 can be formulated

as follows:

min
{∑

h∈Hi

dihχih − ui

}
(15)

s.t.
∑
h∈Hi

wh
j χih � t̂i j , j ∈ Pn

i+1 , (16)∑
h∈Hi

χih � c̄ , (17)

χih ∈ �+ , h ∈Hi . (18)

The objective function (15) minimizes the reduced
cost of the optimal port layout. Constraints (16) stip-
ulate that all transports from Port i have to be satis-
fied. Constraint (17) guarantees that c̄ stack patterns
are selected. Integrality on the decision variables is
imposed with constraints (18).
The minimum reduced cost port layout l is defined

as a il
jr �

∑
h∈Hi : wh

j �r χ
∗
ih for each j ∈ Pn

i+1 and r � 1, . . . , r̄,
where χ∗ is the optimal solution of (15)–(18).
Note that the formulation (15)–(18) has an expo-

nential number of variables because the number of
stack patterns of the sets Hi increases exponentially
with the number of ports. Therefore, to use formula-
tion (15)–(18) to solve the pricing problem for port lay-
outs, a column generation strategy needs to be applied
unless it is possible to enumerate all stack patterns
(i.e., all of the variables χ) a priori. The computational
experiments reported in Section 8 involve instances
with up to 10 ports and up to 10 tiers per stack (i.e.,
r̄ ≤ 10), so it is possible to completely enumerate the
sets Hi a priori. Thus, to solve the pricing problem
for port layouts, we simply solve problem (15)–(18) by
using a general-purpose MIP solver after numerating
all of the stack patterns and the corresponding vari-
ables χ.

6. A Lower Bounding Procedure Based on
the New Formulation

To efficiently solve the MP, two main tools can be used:
heuristic algorithms to price out columns, and stabi-
lization techniques to stabilize the dual variables and
limit the number of iterations of the CG procedure.
In this section, we outline the bounding procedure we
propose to solve the MP and its main ingredients. The
reader interested in a detailed description of the pro-
cedure is referred to the online appendix, where all
details and a pseudo-code are provided.

The CG bounding procedure solves the RMP by
starting with a small subset of variables x and y cor-
responding to a CSPP solution obtained via a greedy
algorithm (see Section 6.1). At each iteration, stack
plans of negative reduced cost are generated via two
heuristic algorithms (see Sections 6.4.1 and 6.4.2), and
the most negative reduced cost stack plan found by
each of the two procedures is added to the RMP;
as soon as none of the heuristics can find negative
reduced cost columns, the exact MIP model described
in Section 5.1 is used. Similarly, at each iteration, port
layouts of negative reduced costs are also generated via
a heuristic algorithm (see Section 6.4.3); the most neg-
ative reduced cost port layout found (if any) is added
to the RMP; if the heuristic cannot find any negative
reduced cost port layout, the exact MIP of Section 5.2
is solved. To speed up the solution process, the RMP is
initializedwith an additional set of columns to stabilize
the dual variables (see Section 6.3), and the CG pro-
cess is terminated as soon as zRMP is not greater than a
combinatorial lower bound computed as described in
Section 6.2.

The procedure to initialize the RMP, to compute the
combinatorial lower bound, the columns added to sta-
bilize the CG procedure, and the three heuristic pricing
algorithms are described next.

6.1. Initializing the Restricted Master Problem
The RMP is initialized with the variables x and y of
the set of stack plans and port layouts of a CSPP solu-
tion computed via a greedy heuristic algorithm with a
polynomial running time.

The greedy algorithm can be outlined as follows.
First, the algorithm decides where each container orig-
inating from Port 1 is stowed upon leaving Port 1; this
is done in a way that no overstowage occurs. Then, the
algorithm iteratively defines the loading/unloading
operations in Ports 2 to n − 1. In each port j, first all
j-containers, along with containers stowed on top of
them (i.e., containers to shift), are unloaded. Then, all
containers either originating from port j or that need
to be shifted are loaded on board by starting from the
containers destined to the farthest port; in this load-
ing phase, the algorithms makes an attempt to load
j-containers on top of other j-containers (if possible) or
to fill up entire stacks with containers having the same

Roberti and Pacino: Decomposition Method for Container Stowage Planning
Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS 1451

destination; when this is not possible, overstowage
takes place.
Our computational experiments with the lower

bounding procedure suggested that the procedure
used to initialize the RMP does not affect the perfor-
mance of the lower bounding procedure. Therefore, we
do not report further details on the greedy heuristic
algorithm.

6.2. A Combinatorial Lower Bound
In this section, we describe a simple combinatorial
lower bound, LB0, to the optimal value of (1)–(5). In
the lower bounding procedure, CG is stopped as soon
as zRMP is not greater than LB0. This allows to save
some CG iterations and speed up the solution process.
Let us call a port j ∈ Pn−1

3 a critical port if t1k � 0 for
all k ∈ Pn

j+1 and t2k � 0 for all k ∈ P j
3, that is, the first two

rows of the transportation matrix T read as

T�

0 t12 t13 . . . t1 j 0 0 . . . 0
0 0 0 . . . 0 t2, j+1 t2, j+2 . . . t2, n

0 0 0
. . .

 .
Let j∗ (if any) be the first critical port.
Proposition 1. If n ≥ 4, r̄ ≥ 2, T is full-loading, j∗ exists,
and (∑ j∗

k�3 t1k)mod r̄ , 0, then at least LBShifts shifts are
needed in any feasible stowage plan, where

LBShifts � min
{(j∗∑

k�3
t1k

)
mod r̄ ,

r̄ −
((j∗∑

k�3
t1k

)
mod r̄

)}
. (19)

Proof. For the sakeof clarity,we refer to Figure 4,where
white containers represent containers from Port 1 to
Port 2, gray containers originate fromPort 1 andaredes-
tined to Ports 3, 4, . . . , j∗, and black containers originate
from Port 2. Note that, because ((∑ j∗

k�3 t1k)mod r̄) , 0,
there has to be at least one stack with both white and
gray containers upon leaving Port 1 and at least one
stackwith both gray and black containers upon leaving
Port 2. There are two cases to consider:

Case 1. r̄ − ((∑ j∗

k�3 t1k)mod r̄) ≤ (∑ j∗

k�3 t1k)mod r̄ (i.e.,
((∑ j∗

k�3 t1k)mod r̄) ≥ r̄/2)—as all black containers to
load in Port 2 are discharged after all gray con-
tainers are already on board, there will be at least

Figure 4. The Two Cases Considered in the Proof of Proposition 1
Case1

At Port 1 At Port 2

Case 2

At Port 1 At Port 2

r̄ − ((∑ j∗

k�3 t1k)mod r̄) black containers on top of gray
containers; this will cause r̄ − ((∑ j∗

k�3 t1k)mod r̄) shifts
in a later port; on the other hand, it would take
(∑ j∗

k�3 t1k)mod r̄ shifts to avoid overstowage at Port 2.
Case 2. (∑ j∗

k�3 t1k)mod r̄ < r̄ − ((∑ j∗

k�3 t1k)mod r̄) (i.e.,
(∑ j∗

k�3 t1k)mod r̄ < r̄/2)—overstowage can be avoided at
Port 2 if the (∑ j∗

k�3 t1k)mod r̄ gray containers stowed in
the stack with white containers are shifted; this implies
already (∑ j∗

k�3 t1k)mod r̄ shifts; on the other hand, it
would not be convenient leaving the gray containers
under the black ones because this would cause r̄ −
((∑ j∗

k�3 t1k)mod r̄) shifts in a later port.
Therefore, at least LBShifts shifts as defined in (19) are

necessary. �

Because of Proposition 1, a valid lower bound, LB0, to
the optimal solution of (1)–(5) is LB0�nCont+LBShifts.

6.3. Stabilizing theMaster Problem
To limit the computing time of the CG bounding proce-
dure, some stabilization of the dual variables is needed
because of high degeneracy of the MP. A successful
stabilization technique used in the literature is to add
cuts to the MD to limit the range of the dual vari-
ables. Ideally, good inequalities restrict the set of feasi-
ble solutions of the MD without cutting off any of its
optimal solutions so that the final lower bound does
not change: such inequalities are called dual optimal
inequalities (DOIs; Ben Amor, Desrosiers, and Valerio
de Carvalho 2006). A category of problems on which
DOIs have been extensively studied and successfully
applied is cutting stock problems (see, e.g., Ben Amor,
Desrosiers, and Valerio de Carvalho 2006; Alves and
de Carvalho 2008; Clautiaux et al. 2011).

When we initialize the RMP, we add three sets of in-
equalities to theMD for each pair of ports (i , j) ∈ T̂:

• LetQ1 � {(q1 , q2): 1≤ q1 < q2 ≤ r̄∧ t̂i j mod q1 � 0∧ t̂i j
mod q2 � 0}, then

vi jq2
≤

q2

q1
vi jq1

, (q1 , q2) ∈ Q1. (20)

• Let Q2 � {(q1 , q2 ,m): 1 ≤ q1 ≤ r̄ − 2 ∧ q1 + 2 ≤ q2 ≤
r̄ ∧ 2 ≤ m < q2 ∧ (q1 + q2)modm � 0}, then

vi jq1
+ vi jq2

≤ m · vi jq3
, (q1 , q2 ,m) ∈ Q2 , (21)

where q3 � (q1 + q2)/m.

Roberti and Pacino: Decomposition Method for Container Stowage Planning
1452 Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS

• Let Q3 � {(q1 , q2 , q3): 1 ≤ q1 < q2 < q3 < r̄ ∧ q3 �

q1 + q2}, then

vi jq3
≤ vi jq1

+ vi jq2
, (q1 , q2 , q3) ∈ Q3. (22)

Themain idea behind inequalities (20)–(22) is to rank
the dual variables vi jq in a way that, when solving
the pricing problems, columns (both stack plans and
port layouts) where containers of the same transport
(i , j) ∈ T̂are stowed inas fewstacksaspossible areprior-
itized over columns where each stack contains contain-
ers with many different destinations. Indeed, we have
observed that, inmostoptimalCSPPsolutions, thereare
many stacks with containers with the same destination
upon leaving each port and very few stacks are shared
by containers with different destinations. Consider the
following three examples of inequalities (20)–(22):

• Example of (20). Given t̂i j � 30, q1 � 1, and q2 � 3,
inequality vi j3 ≤ 3vi j1 is added; this prioritizes aport lay-
outwhere three j-containers are stowed in a single stack
upon leaving port i over a port layout where the same
three j-containers are stowed in three different stacks.

• Example of (21). Given q1 � 1, q2 � 5, and m � 3,
inequality vi j1 + vi j5 ≤ 3vi j2 is added; this prioritizes
a port layout where six j-containers are split into two
stacks (one with a single j-container and another with
fivecontainers) overaport layoutwhere six j-containers
are stowed in three different stacks (two containers
per stack).

• Example of (22). q1 � 2, q2 � 4, and q3 � 6, then
inequality vi j6 ≤ vi j2 + vi j4 is added; a port layout where
six j-containers are stowed in the same stack upon leav-
ing port i is prioritized over a port layout where the six
j-containers are stowed in two different stacks (two in
one stack and four in the other).
Unfortunately, we did not manage to prove that

inequalities (20)–(22) are DOIs, but the computational
results reported in Section 8 show that the final lower
bound achieved with and without these cuts did not
change in the instances we tested, thus suggesting
that (20)–(22) may be DOIs. Besides that, adding these
cuts to the initial RMP (as extra columns) significantly
decreases the total computing time of the bounding
procedure—up to 99% in some test instances.

Note that, if inequalities (20)–(22) are not DOIs (and
theMP is then overstabilized), the lower bounding pro-
cedure is still correct (as we do not require the primal
feasibility of the final MP solution), but the final lower
bound is simplyworse, i.e., strictly lower than zMP.

6.4. Heuristic Algorithms for Pricing Problems
In this section, we describe the three heuristic proce-
dures to price out columns. The first two procedures,
HeuX1 and HeuX2, generate heuristic solutions of the
pricing problem for stack plans; both procedures are
based on dynamic programming (DP), but HeuX1 consid-
ers stack plans without any shifts only, while HeuX2

allows shifts under particular circumstances. The third
heuristic algorithm, HeuY, prices out port layouts.

6.4.1. Procedure HeuX1. In Section 5.2, we introduced
the concept of stack patterns, which is also used in Pro-
cedure HeuX1. For each stack pattern h ∈ Hi of port
i ∈ Pn−1

1 , let us define a set of predecessors Γ(h , i) ⊆ Hi−1
that contains the subset of stack patterns of port i − 1
that can turn into stackpattern h after all discharges and
loadings are completed, but without shifts. For each
stack pattern h ∈ H1, the set of predecessors Γ(h , 1) is
empty; for stack pattern h ∈ Hi of port i ∈ Pn−1

2 , the set
Γ(h , i) is defined as

Γ(h , i)�
{

h′ ∈Hi−1: (τ(h′)� 0) ∨
(
τ(h′) > 0 ∧ wh

j � wh′
j ,

∀ j > τ(h′) ∧wh
τ(h′) ≥ wh′

τ(h′)
)}
,

where, for each h ∈ Hi , i ∈ Pn−2
1 , τ(h) is the first desti-

nation port of the containers stowed in stack pattern h,
excluding port i + 1, i.e.,

τ(h)�

0 if wh
i+1 � r̄ ,

arg min
j�i+2,...,n

{wh
j : wh

j > 0} otherwise.

An example of the set Γ(h , i) of a stack pattern is pro-
vided in Figure 5.

Let f (h , i) be the minimum reduced cost of any stack
plan that (a) implements stack pattern h ∈ Hi in port
i ∈ Pn−1

1 , (b) has been derived from any stack patterns
of the sets Hi′ at ports i′ � 1, . . . , i − 1, and (c) does not
require any shifts in any port. Moreover, let v(h) be the
sum of the dual variables of constraints (3) associated
with stack pattern h, defined as v(h)�∑

j∈Pn
i+1 : wh

j >0 vi j wh
j
.

The most negative reduced cost stack plan without
shifts canbe computedwith the followingDPrecursion:

Initialization: f (h ,1)�−v(h), ∀ h ∈H1 ,

Recursive step: f (h , i)� min
h′∈Γ(h , i)

{ f (h′, i−1)− v(h)+wh′
i },

∀ i ∈Pn−1
2 ∀ h ∈Hi .

Note that Hn−1 contains one vector only (i.e., wh � (wh
n)

� (r̄)). The stack plan ofminimum reduced cost is given
by the stack plan h ∈ Hn−1 and has a reduced cost
f (h , n − 1) + r̄. If it has a negative reduced cost, it is
added to theRMPwhenever procedureHeuX1 is called.

6.4.2. Procedure HeuX2. Let us define a stack layout of
port i ∈Pn−1

1 as avectorλ∈ {0, 1}(n−i)r̄ ,whereλ jr (j ∈Pn
i+1,

r ∈ R) is equal to 1 if a j-container is stowed in tier r of
a given stack upon leaving port i (0 otherwise). Over-
stowage is allowed in stack layouts. Note that a stack
plan consists of a stack layout for each port i ∈ Pn−1

1 .
Among all possible stack layouts, let us consider the fol-
lowing two sets of stack layouts for port i ∈ Pn−1

1 :

Roberti and Pacino: Decomposition Method for Container Stowage Planning
Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS 1453

Figure 5. An Example of Stack Pattern wh � (wh
3 ,w

h
4 ,w

h
5)� (2, 1, 3) for Port 2 (Left Panel) and Its Predecessors (Right Panel) for

an Instance with Five Ports and Six Tiers per Stack

h ∈�2

� (h�) = 0 5 5

Γ(h, 2) ⊂ �1

5 4 3

5
5
5
4
3
3

2
2
2
2
2
2

5
2
2
2
2
2

5
5
2
2
2
2

5
5
5
2
2
2

5
5
5
4
2
2

5
5
5
4
3
2

5
5
5
4
3
3

3

• Stack layouts without overstowage, with contain-
ers with at most four different destinations, and with
those destined to the same port stowed in consecutive
tiers. Given an additional auxiliary variable η j ∈ {0, 1}
(j ∈ Pn

i+1) indicating if at least one j-container is stowed
(0 otherwise), this set of stack layouts corresponds to
all feasible solutions λ ∈ {0, 1}(n−i)r̄ of the following
constraints:

n∑
j�i+1

λ jr � 1, r ∈ R, (23)∑
r∈R

λ jr ≤min{r̄ , t̂i j}η j , j ∈ Pn
i+1 , (24)

n∑
j�i+1

η j ≤ 4, (25)

n∑
j�i+1

jλ jr ≥
n∑

j�i+1
jλ j, r+1 , r ∈ R− , (26)

where constraints (23) state that exactly one container
has to be stowed in each tier, constraints (24) are on/off
constraints to set η j equal to 1 whenever at least a j-
container is stowed in the stack layout, constraints (25)
ensure that containers aredestined tonomore than four
ports, and constraints (26) prevent overstowage.

• All stack layouts with containers destined to ex-
actly two ports, with containers destined to the same
port stowed in consecutive tiers, andwith overstowage.
Therefore, this set of stack layouts corresponds to all
feasible solutions of the following constraints:

n∑
j�i+1

η j � 2, (27)

n∑
j�i+1

jλ jr ≤
n∑

j�i+1
jλ j, r+1 , r ∈ R− ,

(23)–(24). (28)

For each port i ∈ Pn−1
1 , let us define the set Λi of

stack layouts as Λi � {λ ∈ {0, 1}(n−i)r̄ : (23)–(26)} ∪ {λ ∈
{0, 1}(n−i)r̄ : (23)–(24), (27)–(28)}. Note that Λi contains
a subset of all feasible stack layouts that make up the
entire set S of stack plans defined in Section 4. Four
exampless of stack layouts of the set Λ1 of Port 1 for an

Figure 6. Four Stack Layouts of the SetΛ1 of Port 1 for a
CSPP with Five Ports and Six Tiers per Stack

5

5

5

4

4

4

5

4

4

3

2

2

2

2

4

4

4

4

4

4

4

5

5

5

instance with five ports and six tiers per stack are given
in Figure 6; the first two stack layouts on the left satisfy
constraints (23)–(26), and the second two stack layouts
on the right satisfy constraints (23)–(24) and (27)–(28).

Let v(λ) be the sum of the dual variables of (3) asso-
ciated with stack layout λ ∈ Λi (i ∈ Pn−1

1) defined as
v(λ) � ∑

j∈Pn
i+1 : w j>0 vi j w j

, where w j �
∑

r∈R λ jr . Moreover,
let g(λ′,λ) be a compare function that returns the num-
ber of unloading operations (if any) that need to be per-
formed to implement stack layout λ′ at port i − 1 and
stack layout λ at port i, with i ∈ Pn−1

2 , defined as

g(λ′,λ)�
{

0 if λ′jr �λ jr , ∀ j∈Pn
i+1 , ∀r∈R,

r̄−r∗(λ′,λ)+1 otherwise,

where r∗(λ′,λ) � arg minr∈R{λ′jr , λ jr : j ∈ Pn
i+1}, that is,

r∗(λ′,λ) is the index of the first tier from the bottom
of the stack where the container stowed in stack lay-
outλ′ has adestinationport different from the container
stowed in the same tier of stack layout λ.
Let f (λ, i) be the minimum reduced cost of any stack

plan that implements stack layoutλ at Port i ∈ Pn−1
1 , and

has implemented any stack layout of the setsΛl at Ports
l � 1, . . . , i − 1. Functions f (λ, i) can be computed with
the following DP recursion:

Initialization: f (λ, 1)�−v(λ) ∀λ ∈Λ1 ,

Recursive step:
f (λ, i)� min

λ′∈Λi−1
{ f (λ′, i − 1) − v(λ)+ g(λ′,λ)},

∀ i ∈ Pn−1
2 ∀λ ∈Λi .

Note that Λn−1 contains one vector only (i.e., λ �

(λnr) � 1, ∀ r ∈ R). A stack plan of minimum reduced

Roberti and Pacino: Decomposition Method for Container Stowage Planning
1454 Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS

cost w.r.t. the setsΛi is given by this vector λ ∈Λn−1 and
has reduced cost f (λ, n − 1)+ r̄.

6.4.3. Procedure HeuY. Solving the pricing problem
for port layouts to optimality (as described in Sec-
tion 5.2) at each iteration of the lower bounding proce-
dure is time-consuming. Therefore, we rely on a heuris-
tic pricing algorithm based on theMIPmodel (15)–(18).
In particular, we set equal to zero all χih variables cor-
responding to stack patterns h ∈ Hi having containers
destined to more than three ports, i.e., χih � 0 if |{ j: j ∈
Pn

i+1 ∧wh
j > 0}| > 3, and solve (15)–(18) with the remain-

ing χih variables.

7. Finding anOptimal StowagePlan
The lower bounding procedure described in Section 6
returns a lower bound LB to the CSPP, but does not nec-
essarily provide any (optimal) stowage plan. We could
not envision promising ways of embedding the proce-
dure into an exact branch-and-price algorithm, so we
propose a solution method, based on the lower bound
LB, that chooses between twoMIPmodels that we pro-
pose in this section to find an optimal solution.
If LB� n Cont, theMIPmodel described in Section 7.1

is solved to find a stowage plan with no shifts; clearly,
if such a plan exists, it is also optimal for CSPP. Other-
wise, if LB > n Cont (i.e., at least LB − n Cont shifts are
necessary), another MIP model (see Section 7.2) where
shifts are allowed in a small subset of the stacks is
solved; if a stowage plan with a number of shifts equal
to LB− n Cont is found, then it is clearly an optimal one
for CSPP.
Such a solution method strongly relies on the qual-

ity of the lower bound LB and has the drawback that
no feasible stowageplansmaybe found.Computational
results in Section 8 show that it is still a successful solu-
tion method for most test instances with up to 10 ports
and 500 stacks.

7.1. Finding anOptimal Stowage Plan
Without Shifts

The MIP model described in this section is run if the
bounding procedure suggests that a stowage plan with
no shifts may exist (i.e., whenever LB � n Cont). Shifts
are prevented, so if the optimal CSPP solution requires
a strictly positive number of shifts, it cannot be foundby
thisMIP.
Let ωi jc ∈ �+ be an integer variable equal to the num-

ber of j-containers loaded in stack c ∈ C in port i ∈ Pn−1
1

(which is different from the number of j-containers
stowed in stack c ∈ C upon leaving port i), and let ζi jc ∈
{0, 1} be a binary variable equal to 1 if, upon leaving
port i ∈ Pn−3

1 , in stack c ∈ C there is at least one container
destined toaport k ∈P j−1

i+2 ,where j ∈Pn
i+3.Astowageplan

without shifts corresponds to an optimal solution of the

following problem having an optimal value z0 equal to
n Cont:

z0 � max
∑
(i , j)∈T

∑
c∈C

ωi jc (29)

s.t.
∑
c∈C

ωi jc ≤ ti j , (i , j) ∈ T, (30)∑
(k , j)∈T:

k∈P i
1∧ j∈Pn

i+1

ωk jc ≤ r̄ , i ∈ Pn−1
1 , c ∈ C, (31)

∑
(h , k)∈T:

h∈P i
1∧k∈P j−1

i+2

ωhkc ≤ r̄ζi jc , i ∈ Pn−3
1 , j ∈ Pn

i+3 , c ∈ C, (32)

∑
(i+1, k)∈T: k∈Pn

j

ωi+1, k , c ≤ r̄(1− ζi jc),
i ∈ Pn−3

1 , j ∈ Pn
i+3 , c ∈ C, (33)

ωi jc ∈ �+ , (i , j) ∈ T, c ∈ C, (34)
ζi jc ∈ {0, 1}, i ∈ Pn−3

1 , j ∈ Pn
i+3 , c ∈ C. (35)

The objective function (29) maximizes the number of
containers that are loaded on board in each port, which
is at most n Cont. Constraints (30) state that each trans-
port (i , j) ∈ Tmust be satisfied. Constraints (31) impose
on the solution not to exceed the number of tiers per
stack. Constraints (32) are on/off constraints for vari-
ables ζi jc setting them equal to 1, for a given port
i ∈ Pn−3

1 , a given port j ∈ Pn
i+3, and a given stack c ∈ C,

whenever stack c contains containers destined to one
of the ports from i + 2 to j − 1. Constraints (33) stipu-
late that, if ζi jc is equal to 1, then containers destined to
ports j, j + 1, . . . , n cannot be loaded into stack c ∈ C in
port i + 1. Constraints (34)–(35) define the range of the
decision variables.

To better clarify constraints (32) and (33), let us con-
sider the following example: n � 8, r̄ � 10, and, for a
given stack c ∈ C, ω12c � 6, ω17c � 1, ω18c � 3, ω23c � 4,
ω27c � 2. In stack c at Port 1, three 8-containers have
been stowed in the bottommost tiers, one 7-container
has been stowed on top of the previous three contain-
ers, and six 2-containers have been stowed in the top-
most tiers. At Port 2, the six 2-containers have been dis-
charged and have been replaced by two 7-containers
and four 3-containers. In Port 3, the four topmost con-
tainers will be discharged, but, as overstowage is pre-
vented, containers destined to Port 8 cannot be further
loaded in stack c. Indeed, the left-hand side of con-
straint (32) for i � 2 and j � 8 reads as ω14c + ω15c +

ω16c +ω17c +ω24c +ω25c +ω26c +ω27c � 3, which implies
ζ28c � 1. Constraint (33) for i � 2 and j � 8 sets ω38c equal
to 0, thus preventing 8-containers to be loaded in the
stack in Port 3. On the contrary, constraints (32) leave
ζ25c � ζ26c � ζ27c � 0, soω35c ,ω36c , andω37c are allowed to
take strictly positive values because of constraints (33).
Indeed, in Port 3, containers destined to Ports 5, 6, and 7
can replace the four 3-containers that are discharged.

Roberti and Pacino: Decomposition Method for Container Stowage Planning
Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS 1455

7.2. Finding anOptimal Stowage Plan with Shifts
Whenever the lower bound LB returned by the bound-
ingprocedureof Section 6 is strictly greater than n Cont,
shifts are necessary in any feasible stowage plan. In
this case, to find an optimal stowage plan, we run the
MIP model described in this section. This MIP extends
model (29)–(35) by allowing shifts in a limited num-
ber of stacks only and preventing them in the remain-
ing stacks.
Let CN ⊂ C be the subset of stacks where shifts are

prevented, and let CY � C\CN be the remaining subset
of stacks where shifts are allowed.
Five sets of decision variables are used. The first two

sets, ωi jc and ζi jc , are defined as in Section 7.1 but on
the set of stacks CN , that is, ωi jc ∈ �+ equals the number
of j-containers added in stack c ∈ CN at port i ∈ Pn−1

1 ,
and ζi jc ∈ {0, 1} equals 1 if, upon leaving port i ∈ Pn−3

1 ,
in stack c ∈ CN there is at least one container destined
to a port k ∈ P j−1

i+2 , where j ∈ Pn
i+3. The other three sets of

variables are µi jrc ∈ {0, 1}, which equals 1 if, upon leav-
ing port i ∈ Pn−1

1 , a j-container (with j ∈ Pn
i+1) is stowed

in tier r ∈ R of stack c ∈ CY (0 otherwise); γirc ∈ {0, 1},
which equals 1 if the container stowed in tier r ∈ R of
stack c ∈ CY upon leaving Port i ∈ Pn−1

1 is unloaded at
Port i + 1; and δi j ∈ �+, which indicates the number of
j-containers that should be on board upon leaving Port
i ∈ Pn−1

1 but were not loaded. The proposed MIP model
reads as follows:

z1�min
{ ∑
(i , j)∈T̂

Mδi j+
∑
(i , j)∈T

∑
c∈CN

ωi jc+

n−1∑
i�1

∑
r∈R

∑
c∈CY

γirc

}
(36)

s.t.
∑
c∈CN

ωi jc+
∑
c∈CY

∑
r∈R
(µi jrc−µi−1, jrc)≤ ti j , (i , j)∈T, (37)∑

(k , j)∈T:
k∈P i

1∧ j∈Pn
i+1

ωk jc≤ r̄ , i∈Pn−1
1 , c∈CN , (38)

∑
(h ,k)∈T:

h∈P i
1∧k∈P j−1

i+2

ωhkc≤ r̄ζi jc , i∈Pn−3
1 , j∈Pn

i+3 , c∈CN , (39)

∑
(i+1,k)∈T:k∈Pn

j

ωi+1,kc≤ r̄(1−ζi jc),

i∈Pn−3
1 , j∈Pn

i+3 , c∈CN , (40)∑
r∈R

∑
c∈CY

µi jrc+
∑
(k , j)∈T:

k∈P i
1

∑
c∈CN

ωk jc+δi j≥ t̂i j , (i , j)∈T̂, (41)

n∑
j�i+1

µi jrc≤1, i∈Pn−1
1 , r∈R, c∈CY , (42)

γirc≥µi jrc−µi+1, jrc , (i , j)∈T̂, r∈R, c∈CY , (43)
γirc≤γi ,r+1,c , i∈Pn−1

1 , r∈R− , c∈CY , (44)
ωi jc∈�+ , (i , j)∈T, c∈CN , (45)
ζi jc∈{0,1}, i∈Pn−3

1 , j∈Pn
i+3 , c∈CN , (46)

µi jrc∈{0,1}, (i , j)∈T̂, r∈R, c∈CY , (47)
γirc∈{0,1}, i∈Pn−1

1 , r∈R, c∈CY , (48)
δi j∈�+ , (i , j)∈T, (49)

whereM in the objective function (36) represents a large
enough number.
The objective function (36), first, minimizes the num-

ber of containers not loaded (i.e., aims to set all δ vari-
ables to 0) and then minimizes the total number of
shifts; note that any feasible stowage plan corresponds
to a solution where all δi j are 0, and the second and
third termof the objective function count the number of
discharges in stacks CN and the number of discharges
plus thenumberof shifts in stacksCY , respectively.Con-
straints (37) guarantee that, if all containers are loaded,
each transport ti j , (i , j) ∈ T, is not exceeded. Con-
straints (38)–(40) correspond to constraints (31)–(33).
Constraints (41) link variables ωi jc , µi jrc , and δi j and set
δi j equal to the number of j-containers not loaded upon
leaving Port i (with (i , j) ∈ T̂). Constraints (42) stipulate
that at most one container can be stowed in each tier
r ∈ R of each stack c ∈ CY upon leaving port i ∈ Pn−1

1 .
Constraints (43) are on-off constraints for variables γirc
that are set equal to 1 whenever the container stowed
in tier r ∈ R of stack c ∈ CY upon leaving Port i ∈ Pn−1

1
is unloaded at Port i + 1. Constraints (44) stipulate that
the container loaded in tier r + 1 of stack c ∈ CY at port
i ∈ Pn−1

1 has to be unloaded if the container stowed in
tier r ∈ R− (or any of the tiers underneath) is unloaded.
Constraints (45)–(49) define the range of the decision
variables.
To make use of the lower bound LB in model (36)–

(49), the following constraint is added:∑
(i , j)∈T

∑
c∈CN

ωi jc +

n−1∑
i�1

∑
r∈R

∑
c∈CY

γirc ≥ LB, (50)

which allows to stop the MIP model as soon as a solu-
tion of cost LB is found.Moreover, the number of stacks
where shifts are allowed is set equal to the minimum
number of shifts returned by LB, that is, |CY | � min{c̄,
LB− n Cont}.

8. ComputationalResults
In this section, we report the computational results
of the lower bounding procedure described in Sec-
tion 6 and the proposed method for finding an opti-
mal stowage plan described in Section 7. A compari-
son with the compact formulations of Avriel and Penn
(1993) and Ding and Chou (2015), which represent the
state-of-the-art exact methods to solve the CSPP, is pro-
vided; both formulations are reported in the online
appendix. We coded both formulations and solved
them by using Cplex (version 12.6.1). Our algorithms
were coded in C compiled with Visual Studio 2015 and
by usingCplex callable libraries (version 12.6.1) to solve
formulation (6)–(14) to price out stack plans, formu-
lation (15)–(18) to price out port layouts, and formu-
lations (29)–(35), (36)–(49) to find an optimal stowage
plan. All algorithms and models were run on a single

Roberti and Pacino: Decomposition Method for Container Stowage Planning
1456 Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS

thread of an Intel Core i7-6700K at 4 GHz equipped
with 24 GB RAM. All computing times are in seconds
rounded to the nearest integer.

8.1. Test Instances
As test instances used in prior papers were not avail-
able, we generated 405 instances of five types (Long,
Mixed, Short, Authentic, and Required) with differ-
ent features of the transportationmatrix.All transporta-
tion matrices are full-loading as assumed throughout
the paper.
Long, Mixed, and Short instanceswere described and

tested by Avriel et al. (1998). In Long instances, con-
tainers stay on average a long period of time on board.
In Short instances, containers stay on average a short
period of time on board. In Mixed instances, there is
a more random distribution of the magnitude of the
transports, so long and short distance transports are
mixed. The reader is referred to Avriel et al. (1998) for a
detailed description of these three sets.
Authentic instances were described in Ding and

Chou (2015) and combine both short and long distance
transports.Wecoded the instancegenerator that is accu-
rately described in Ding and Chou (2015), so we omit
the details here.

The last set of instances, Required, is introduced in
this paper. Transportation matrices are such that shifts

Table 2. Summary of the Computational Results on Long Instances

AP93 DC15 This paper

n r̄ c̄ LB UB Opt Tub Ttot LB UB Opt Tub Ttot LB0 Vars Iter LB Tlb UB Opt Ttot

6 6 100 0 0 3 1 1 0 0 3 11 11 0 305 4 0 0 0 3 0
6 6 300 0 0 3 4 4 0 0 3 74 74 0 506 6 0 0 0 3 0
6 6 500 0 0 3 4 4 0 0 3 60 60 0 659 3 0 0 0 3 0
6 8 100 0 0 3 2 2 0 0 3 11 11 0 519 6 0 0 0 3 0
6 8 300 0 0 3 9 9 0 0 3 482 482 0 722 5 0 0 0 3 0
6 8 500 0 0 3 33 33 0 0 3 1,666 1,666 0 911 4 0 0 0 3 1
6 10 100 0 0 3 4 4 0 0 3 54 54 0 761 12 0 0 0 3 0
6 10 300 0 0 3 9 9 0 0 3 232 232 0 827 3 0 0 0 3 0
6 10 500 0 0 3 462 462 0 8 2 1,994 2,061 0 1,159 4 0 0 0 3 0
8 6 100 0 0 3 8 8 0 0 3 134 134 0 471 19 0 0 0 3 0
8 6 300 0 0 3 57 57 0 0 3 1,389 1,389 0 677 8 0 0 0 3 4
8 6 500 0 0 3 95 95 0 19 1 2,685 3,088 0 868 8 0 0 0 3 7
8 8 100 0 0 3 19 19 0 0 3 471 471 0 877 20 0 0 0 3 0
8 8 300 0 0 3 64 64 0 0 3 2,212 2,212 0 1,003 8 0 0 0 3 1
8 8 500 0 0 3 321 321 0 14,751 0 807 3,600 0 1,231 7 0 0 0 3 4
8 10 100 0 0 3 41 41 0 0 3 994 994 0 1,324 14 0 0 0 3 1
8 10 300 0 0 3 240 240 0 3,831 1 1,551 2,871 0 1,503 11 0 0 0 3 2
8 10 500 0 0 3 495 495 0 18,779 0 1,758 3,600 0 1,763 10 0 0 0 3 5
10 6 100 0 0 3 6 6 0 0 3 192 192 0 604 19 0 0 0 3 0
10 6 300 0 0 3 204 204 0 126 0 2,291 3,600 0 877 13 0 0 0 3 7
10 6 500 0 0 3 852 852 0 15,959 0 1,826 3,600 0 1,110 19 0 0 0 3 13
10 8 100 0 0 3 92 92 0 3 2 814 1,923 0 1,149 27 0 0 0 3 0
10 8 300 0 0 3 467 467 0 7,701 1 1,332 2,736 0 1,452 19 0 0 0 3 10
10 8 500 0 0 3 1,505 1,505 0 20,051 0 3,312 3,600 0 1,620 14 0 0 0 3 37
10 10 100 0 0 3 264 264 0 58 1 2,624 2,795 0 1,911 26 0 0 0 3 2
10 10 300 0 0 3 862 862 0 16,093 0 1,802 3,600 0 2,228 20 0 0 0 3 13
10 10 500 0 8,268 2 1,293 2,412 0 30,342 0 3,600 3,600 0 2,320 19 0 0 0 3 17
Avg 274 316 1,273 1,802 1,087 12 0 5
Solved 80 50 81

are necessary, that is LBShifts > 0 (see (19)). To do so, the
first rows ofT (a randomnumber typically between two
and four) contain a critical port (see Section 6.2), thus
guaranteeing that shiftsmustbeperformed. Ineach row
of T, the nonzero transports represent partitions of the
c̄ · r̄ containers to transport to fulfill the full-loading
assumption. For the sake of brevity, we omit further
details on the instance generator, whose source code is
available upon request to the authors.

For each type, we generated 81 instances by vary-
ing the number of ports (n � 6, 8, 10), the number of
stacks (c̄ � 100, 300, 500), and the number of tiers per
stack (r̄ � 6, 8, 10). For each combination of n, c̄, and r̄,
three instances were generated. The parameters n, c̄,
and r̄ we selected correspond to real-life problems of
small/medium-size container ships transporting 600 to
5,000 TEUand are in linewithwhat has been done in all
of the papers from the literature, except for the number
ofports: heuristicmethods canaddress instanceswith n
up to 20, which is out of reach for our solution method
that aims to find an optimal stowage plan.

8.2. Performance Analysis
Tables 2–6 report a summary of the computation results
achievedby thecompact formulationofAvriel andPenn
(1993) (hereafter called AP93), the compact formula-
tion of Ding and Chou (2015) (hereafter DC15), and

Roberti and Pacino: Decomposition Method for Container Stowage Planning
Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS 1457

Table 3. Summary of the Computational Results on Mixed Instances

AP93 DC15 This paper

n r̄ c̄ LB UB Opt Tub Ttot LB UB Opt Tub Ttot LB0 Vars Iter LB Tlb UB Opt Ttot

6 6 100 0 0 3 1 1 0 0 3 5 5 0 324 4 0 0 0 3 0
6 6 300 0 0 3 4 4 0 0 3 88 88 0 511 5 0 0 0 3 0
6 6 500 0 0 3 12 12 0 0 3 825 825 0 701 4 0 0 0 3 0
6 8 100 0 0 3 2 2 0 0 3 30 30 0 522 3 0 0 0 3 0
6 8 300 0 0 3 10 10 0 0 3 230 230 0 719 4 0 0 0 3 0
6 8 500 0 0 3 28 28 0 0 3 1,909 1,909 0 912 3 0 0 0 3 1
6 10 100 0 0 3 4 4 0 0 3 105 105 0 796 3 0 0 0 3 0
6 10 300 0 0 3 21 21 0 0 3 626 626 0 964 3 0 0 0 3 0
6 10 500 0 0 3 62 62 0 0 3 2,817 2,817 0 1,207 3 0 0 0 3 1
8 6 100 0 0 3 6 6 0 0 3 123 123 0 481 11 0 0 0 3 0
8 6 300 0 0 3 32 32 0 0 3 1,603 1,603 0 671 5 0 0 0 3 2
8 6 500 0 0 3 96 96 0 3,533 1 1,699 3,307 0 871 9 0 0 0 3 4
8 8 100 0 0 3 21 21 0 0 3 354 354 0 876 10 0 0 0 3 1
8 8 300 0 0 3 84 84 0 4 2 2,566 2,957 0 1,042 8 0 0 0 3 2
8 8 500 0 0 3 171 171 0 8,625 0 1,322 3,600 0 1,226 6 0 0 0 3 4
8 10 100 0 0 3 46 46 0 0 3 847 847 0 1,387 9 0 0 0 3 0
8 10 300 0 0 3 241 241 0 3,582 1 2,281 3,270 0 1,516 9 0 0 0 3 2
8 10 500 0 0 3 451 451 0 15,435 0 2,145 3,600 0 1,839 7 0 0 0 3 4
10 6 100 0 0 3 18 18 0 0 3 1,440 1,440 0 672 14 0 0 0 3 1
10 6 300 0 0 3 138 138 0 2,769 1 2,011 3,553 0 854 13 0 0 0 3 7
10 6 500 0 0 3 461 461 0 10,151 0 2,300 3,600 0 1,086 15 0 0 0 3 35
10 8 100 0 0 3 53 53 0 5 2 1,694 2,040 0 1,276 16 0 0 0 3 1
10 8 300 0 0 3 195 195 0 6,564 0 1,540 3,600 0 1,394 13 0 0 0 3 8
10 8 500 0 0 3 852 852 0 16,688 0 2,703 3,600 0 1,692 14 0 0 0 3 26
10 10 100 0 0 3 148 148 0 166 1 2,091 3,008 0 1,911 19 0 0 0 3 1
10 10 300 0 0 3 996 996 0 14,859 0 1,414 3,600 0 2,178 18 0 0 0 3 9
10 10 500 0 0 3 1,869 1,869 0 24,247 0 3,292 3,600 0 2,461 15 0 1 0 3 19
Avg 223 223 1,410 2,012 1,114 9 0 5
Solved 81 50 81

the solution method proposed in this paper. Each table
refers to a different type of instance and each line indi-
cates averages over the three instanceswith fixedvalues
n, c̄, and r̄. A time limit of one hour was imposed on
each solution method. Detailed computational results
are reported in the online appendix.

The following information is reported in each table:
features of the instance (n, c̄, r̄); for AP93 and for DC15,
the final lower bound (LB), the final upper bound (UB),
the number of instances solved to optimality out of the
three (Opt), the computing time (Tub) to find the final
upper bound (UB), and the total computing time (Ttot);
forour solutionmethod, the combinatorial lowerbound
(LB0), the number of variables of the final RMP (Vars),
the number of iterations of column generation (Iter),
the lower bound returned by the bounding procedure
(LB), the computing time taken by the bounding proce-
dure (Tlb), the final upper bound (UB), the number of
instances solved to optimality (Opt), and the total com-
puting time (Ttot). In LB0, LB, and UB of our solution
method,wesubtracted n Cont (i.e., the constantnumber
of discharges) to have a direct comparison with AP93
andDC15 (the reader is referred to the online appendix
for a detailed description of AP93 and DC15); more-
over, in two instances no feasible UB was found, so the
reported UB is the average of the costs of the feasible

solutions only—in this case, an asterisk is also reported.
The last two lines of each table report the number of
instances solved by each method and average comput-
ing times (inwhich 3,600 seconds are consideredwhen-
ever the time limit was reached).

Table 2 refers to Long instances (detailed results can
be found in Tables EC.1–EC.3 in the online appendix).
Our solution method was able to find an optimal solu-
tion with no shifts for all 81 instances, so all lower
boundsareobviouslyzero.Theaveragecomputing time
of our method is five seconds, so it clearly outperforms
both AP93, which could not solve one of the instances
with 500 stacks and solved the remaining ones on aver-
age in 316 seconds, and DC15, which solved only 50
instances in 1,802 seconds of average computing time.
Note that the average computing time of the proposed
lower bounding procedure is almost negligible (less
than a second), just a few iterations of column genera-
tion are needed (12 on average), and the final RMP con-
tains 1,087 variables on average.

Table 3 summarizes the results on Mixed instances
(see Tables EC.4–EC.6 in the online appendix for de-
tailed results). Our solutionmethod proved that a solu-
tion with no shifts can be found on all 81 instances in
an average computing timeof five seconds.Ourmethod
outperformedAP93,which could solve all instances but

Roberti and Pacino: Decomposition Method for Container Stowage Planning
1458 Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS

Table 4. Summary of the Computational Results on Short Instances

AP93 DC15 This paper

n r̄ c̄ LB UB Opt Tub Ttot LB UB Opt Tub Ttot LB0 Vars Iter LB Tlb UB Opt Ttot

6 6 100 0 0 3 1 1 0 0 3 4 4 0 305 7 0 0 0 3 0
6 6 300 0 0 3 4 4 0 0 3 29 29 0 503 5 0 0 0 3 0
6 6 500 0 0 3 7 7 0 0 3 72 72 0 707 4 0 0 0 3 1
6 8 100 0 0 3 2 2 0 0 3 8 8 0 513 6 0 0 0 3 0
6 8 300 0 0 3 7 7 0 0 3 38 38 0 709 6 0 0 0 3 0
6 8 500 0 0 3 31 31 0 0 3 1,278 1,278 0 908 3 0 0 0 3 0
6 10 100 0 0 3 5 5 0 0 3 51 51 0 789 6 0 0 0 3 0
6 10 300 0 0 3 19 19 0 0 3 413 413 0 975 4 0 0 0 3 0
6 10 500 0 0 3 65 65 0 0 3 2,212 2,212 0 1,197 3 0 0 0 3 0
8 6 100 0 0 3 8 8 0 0 3 93 93 0 496 13 0 0 0 3 0
8 6 300 0 0 3 46 46 0 0 3 662 662 0 692 9 0 0 0 3 2
8 6 500 0 0 3 83 83 0 83 1 1,216 2,551 0 912 7 0 0 0 3 4
8 8 100 0 0 3 14 14 0 0 3 479 479 0 888 14 0 0 0 3 0
8 8 300 0 0 3 68 68 0 0 3 2,700 2,700 0 1,068 10 0 0 0 3 2
8 8 500 0 0 3 211 211 0 7,423 0 848 3,600 0 1,297 9 0 0 0 3 4
8 10 100 0 0 3 19 19 0 0 3 560 560 0 1,319 12 0 0 0 3 0
8 10 300 0 0 3 195 195 0 2,975 0 1,282 3,600 0 1,633 10 0 0 0 3 2
8 10 500 0 0 3 463 463 0 12,558 0 1,538 3,600 0 1,815 6 0 0 0 3 4
10 6 100 0 0 3 34 34 0 11 2 1,028 1,349 0 697 18 0 0 0 3 1
10 6 300 0 0 3 226 226 0 25 1 2,106 3,484 0 961 15 0 0 0 3 6
10 6 500 0 0 3 317 317 0 6,514 0 1,744 3,600 0 1,129 13 0 0 0 3 18
10 8 100 0 0 3 49 49 0 1 2 2,744 2,986 0 1,330 22 0 0 0 3 1
10 8 300 0 0 3 868 868 0 8,658 0 897 3,600 0 1,590 16 0 0 0 3 8
10 8 500 0 0 3 2,270 2,270 0 14,603 0 2,930 3,600 0 1,824 16 0 0 0 3 23
10 10 100 0 0 3 244 244 0 156 2 2,503 2,658 0 2,056 22 0 0 0 3 1
10 10 300 0 0 3 959 959 0 10,190 0 1,230 3,600 0 2,342 16 0 0 0 3 10
10 10 500 0 6,115 2 556 1,668 0 16,796 0 3,318 3,600 0 2,609 16 0 1 0 3 16
Avg 251 292 1,185 1,868 1,158 11 0 4
Solved 80 50 81

with an average computing time of 223 seconds, and
DC15, which could solve only 50 of the 81 instances.
Also, in these instances, the average computing time of
the bounding procedure is less than a second and just a
few iterations of column generation are performed.
In Table 4, we compare the three solution methods

on Short instances (see Tables EC.7–EC.9 in the online
appendix for detailed results). The results confirmwhat
we have already seen in Tables 2 and 3: our solution
method found an optimal solution with no shifts in all
81 instances and outperformed both AP93 and DC93 in
terms of number of instances solved to optimality and
average computing times.
Table 5 summarizes the results on Authentic in-

stances (refer to Tables EC.10–EC.12 in the online ap-
pendix for detailed results). Even on these instances, no
shifts were necessary in any of the optimal solutions.
Even though Authentic instances seem a bit tougher
than the previous three sets of instances, our solution
method was still able to solve all of them in a short
amount of time. Yet it outperformed AP93 and DC15,
which did not manage to solve 2 and 34 instances to
optimality, respectively, within the imposed time lim-
its. As seen previously, the complexity of the problem
increases with the number of stacks.

Note that all instances of the first four sets did not
require any shift. The heuristic of Ding andChou (2015)
already showed that the number of shifts is always very
small compared to the number of transported contain-
ers and it usually decreases when the number of stacks
increases. Even though we cannot prove that a solution
with no shifts always exists for these types of trans-
portation matrices and we could not address instances
with more than 10 ports, we can expect that even if we
increase n and c̄, an optimal solution with no shift will
likely still exist.

A summary of the computational results achieved on
the new set of Required instances is given in Table 6
(detailed results are provided in Tables EC.13–EC.15 in
the online appendix). These instances are much harder
to solve than the other four sets: ourmethod could solve
64 of the 81 instances, whereas AP93 and DC15 could
solve 28 and 8 instances only. Therefore, our method
still outperforms the two compact formulations. The
lower bounding procedure has small computing times
of a few seconds and provides strictly positive lower
bounds; in many cases, the combinatorial lower bound
coincides with the lower bound provided by the lin-
ear relaxationof thenew formulation.When comparing
the lower bounds of the three methods, we noted that

Roberti and Pacino: Decomposition Method for Container Stowage Planning
Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS 1459

Table 5. Summary of the Computational Results on Authentic Instances

AP93 DC15 This paper

n r̄ c̄ LB UB Opt Tub Ttot LB UB Opt Tub Ttot LB0 Vars Iter LB Tlb UB Opt Ttot

6 6 100 0 0 3 1 1 0 0 3 8 8 0 312 5 0 0 0 3 0
6 6 300 0 0 3 2 2 0 0 3 18 18 0 516 3 0 0 0 3 0
6 6 500 0 0 3 21 21 0 0 3 262 262 0 707 5 0 0 0 3 1
6 8 100 0 0 3 3 3 0 0 3 28 28 0 516 5 0 0 0 3 0
6 8 300 0 0 3 11 11 0 0 3 267 267 0 718 3 0 0 0 3 1
6 8 500 0 0 3 21 21 0 0 3 1,502 1,502 0 911 4 0 0 0 3 0
6 10 100 0 0 3 4 4 0 0 3 42 42 0 766 6 0 0 0 3 0
6 10 300 0 0 3 39 39 0 0 3 1,266 1,266 0 969 5 0 0 0 3 0
6 10 500 0 0 3 68 68 0 9,326 1 1,194 3,240 0 1,182 5 0 0 0 3 1
8 6 100 0 0 3 13 13 0 0 3 265 265 0 507 12 0 0 0 3 0
8 6 300 0 0 3 50 50 0 0 3 2,303 2,303 0 707 5 0 0 0 3 2
8 6 500 0 0 3 70 70 0 94 1 1,248 2,687 0 897 7 0 0 0 3 6
8 8 100 0 0 3 117 117 0 0 3 574 574 0 906 15 0 0 0 3 0
8 8 300 0 0 3 148 148 0 27 1 3,125 3,571 0 1,095 9 0 0 0 3 3
8 8 500 0 0 3 296 296 0 17,278 0 1,210 3,600 0 1,309 7 0 0 0 3 6
8 10 100 0 0 3 74 74 0 0 3 1,386 1,386 0 1,406 17 0 0 0 3 0
8 10 300 0 0 3 178 178 0 299 0 3,092 3,600 0 1,615 9 0 0 0 3 3
8 10 500 0 0 3 490 490 0 22,471 0 2,337 3,600 0 1,776 5 0 0 0 3 5
10 6 100 0 0 3 76 76 0 0 3 1,710 1,710 0 792 25 0 0 0 3 2
10 6 300 0 1 2 449 1,526 0 3,573 0 2,050 3,600 0 982 18 0 0 0 3 67
10 6 500 0 0 3 1,490 1,490 0 18,071 0 2,729 3,600 0 1,135 7 0 0 0 3 34
10 8 100 0 0 3 117 117 0 0 3 3,319 3,319 0 1,426 28 0 0 0 3 3
10 8 300 0 0 3 1,781 1,781 0 15,088 0 1,511 3,600 0 1,603 16 0 0 0 3 24
10 8 500 0 0 3 2,170 2,170 0 24,404 0 3,600 3,600 0 1,793 12 0 0 0 3 28
10 10 100 0 0 3 177 177 0 8 2 3,178 3,349 0 2,297 32 0 1 0 3 7
10 10 300 0 0 3 1,039 1,039 0 18,071 0 1,999 3,600 0 2,391 10 0 1 0 3 74
10 10 500 0 10,176 2 1,562 2,674 0 30,087 0 3,600 3,600 0 2,661 13 0 3 0 3 29
Avg 388 469 1,623 2,155 1,181 11 0 11
Solved 79 47 81

the linear relaxations of AP93 and DC15 always pro-
vide zero shifts, while the proposed method returns a
strictly positive number of shifts. Whenever an optimal
solution can be found, the number of shifts required
is equal to the lower bound returned by the bound-
ing procedure—this cannot be seen from Table 6 but
from Tables EC.13–EC.15 in the online appendix. It is
interesting to note that, overall, the number of shifts
required is always of a few units; moreover, it looks like
an increase in the number of ports, stacks, and/or tiers
does not necessarily translate into more shifts in the
optimal solutions.

8.3. Impact of the Stabilization Technique
In Table 7, we show the impact of the stabilization tech-
nique described in Section 6.3 on the lower bounding
procedure. We selected 10 Required instances with 10
ports (of which we report r̄, c̄, and the instance num-
ber, no) where the final lower bound is strictly greater
than the combinatorial lower bound, and we ran the
boundingprocedurewith (stabilizedversion) andwith-
out (nonstabilized version) inequalities (20)–(22). For
the two versions, we report the number of iterations
(Iter), the final lower bound (LB), and the computing
time (Tlb). We also indicate the total number of DOIs

(inequalities (20) + (21) + (22)) added in the stabilized
version of the column generation.

From Table 7, we see that the final lower bound
always coincides, thus suggesting that inequalities (20)–
(22) may be DOIs even though we do not have a formal
proof (as stated in Section 6.3). Moreover, the positive
effects of the inequalities in the stabilized version are
evident: there is a decrease of 95.2% of the number of
column generation iterations required to converge and
a decrease of 99.6% of the computing time.

8.4. Impact of the Lower Bounding Procedure
Thegoal of the lowerboundingprocedure is to compute
the lower bound LB, which is used to choose between
looking for a feasible solution with no shifts by solving
model (29)–(35) and looking for anoptimal solution that
allows shifts in nomore thanLB−n Cont stacks by solv-
ing model (36)–(49). Even though the computing time
to achieve LB is almost negligible (on average about one
second), the time to code the different components of
the lower bounding procedure is significant. Therefore,
the reader may wonder if it is worth having a proce-
dure to compute LB, or whether the two MIP models
(29)–(35) and (36)–(49) could be directly used to find an
optimal CSPP solution.

Roberti and Pacino: Decomposition Method for Container Stowage Planning
1460 Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS

Table 6. Summary of the Computational Results on Required Instances

AP93 DC15 This paper

n r̄ c̄ LB UB Opt Tub Ttot LB UB Opt Tub Ttot LB0 Vars Iter LB Tlb UB Opt Ttot

6 6 100 2 2 3 38 38 1 2 2 58 1,257 2 284 5 2 0 2 3 0
6 6 300 3 4 2 385 1,583 2 4 1 33 2,418 2 461 5 4 0 4 3 65
6 6 500 2 2 3 1,768 1,768 1 2 0 391 3,600 2 676 3 2 0 2 3 11
6 8 100 2 2 3 174 174 0 2 0 23 3,600 2 476 7 2 0 2 3 3
6 8 300 2 3 2 331 1,527 2 3 1 184 2,551 2 614 4 3 0 3 3 6
6 8 500 1 2 1 903 3,288 0 2 0 542 3,600 2 871 5 2 0 2 3 220
6 10 100 3 3 3 196 195 2 3 2 34 1,229 3 692 8 3 0 3 3 5
6 10 300 2 2 2 687 1,883 0 2 0 856 3,600 2 908 4 2 0 2 3 2
6 10 500 0 2 1 26 2,408 0 3 1 726 2,446 2 1,072 5 2 0 2 3 128
8 6 100 0 2 1 66 2,430 0 2 0 644 3,600 2 495 14 2 0 2 3 132
8 6 300 0 2 1 488 2,874 0 3 0 1,120 3,600 2 700 6 2 0 2 3 47
8 6 500 1 3 1 1,193 3,576 0 43 0 734 3,600 2 852 18 3 0 3 3 840
8 8 100 1 2 1 116 2,408 0 2 0 487 3,600 2 829 18 2 1 2 3 68
8 8 300 0 5 0 1,665 3,600 0 16 0 1,701 3,600 4 1,027 16 4 0 5 2 2,393
8 8 500 0 3 0 323 3,600 0 5,922 0 2,452 3,600 3 1,262 12 3 0 3 1 2,559
8 10 100 1 6 1 739 2,976 0 6 0 2,806 3,600 4 1,182 17 6 1 6 2 1,270
8 10 300 0 6 0 458 3,600 0 163 0 574 3,600 3 1,350 19 5 1 7 2 1,270
8 10 500 0 7,332 0 597 3,600 0 7,318 0 1,977 3,600 2 1,647 20 4 1 5 2 2,299
10 6 100 1 1 2 417 1,348 0 3 1 1,347 2,533 1 754 25 1 0 1 3 28
10 6 300 1 5 0 312 3,600 0 94 0 1,417 3,600 2 917 37 4 1 4 2 1,383
10 6 500 0 10,735 0 252 3,600 0 10,978 0 1,863 3,600 2 1,143 38 3 0 5 1 2,459
10 8 100 0 7 0 1,762 3,600 0 34 0 2,727 3,600 4 1,357 39 4 1 5 1 2,424
10 8 300 1 5,237 0 472 3,600 0 9,645 0 1,620 3,600 2 1,583 21 2 3 3 2 1,814
10 8 500 0 8,559 0 382 3,600 0 23,720 0 2,735 3,600 2 1,666 13 3 1 ∗3 2 2,125
10 10 100 0 5 0 1,656 3,600 0 25 0 2,415 3,600 3 1,824 32 5 3 6 2 1,506
10 10 300 0 6,100 1 253 2,599 0 16,533 0 1,246 3,600 3 2,205 38 4 5 5 2 1,747
10 10 500 0 3 0 1,427 3,600 0 28,619 0 3,600 3,600 2 2,408 27 3 5 ∗5 1 2,416
Avg 633 2,618 1,271 3,260 1,084 17 1 1,008
Solved 28 8 64

Note. An asterisk indicates that in one of the instances no feasible solution was found.

Table 7. Effects, on a Sample Set of Required Instances with
10 Ports, of Stabilizing the Bounding Procedure

Nonstabilized Stabilized

r̄ c̄ No Iter LB Tlb nDOI Iter LB Tlb

6 300 2 143 4 3 480 20 4 1
6 300 3 501 5 18 475 78 5 2
6 500 2 955 5 25 459 93 5 1
8 300 3 1,431 3 101 1,202 37 3 5
8 500 1 338 4 12 968 9 4 1
8 500 2 561 2 29 1,105 20 2 3
10 100 1 282 6 7 1,255 27 6 2
10 100 2 798 5 69 1,782 52 5 4
10 300 2 2,641 8 6,655 1,564 86 8 5
10 500 1 2,069 5 341 1,625 45 5 4
Avg 972 726 47 3
Saving (%) 95.2 99.6

A simple approach (hereafter called NoLB) to find
an optimal CSPP could be to first solve model (29)–(35)
and then, if a solution with no shifts does not exist,
solve model (36)–(49) by removing constraint (50) and
by allowing shifts on a limited but large enough set
of stacks—for example, by setting |CY | � 10. Based on
the computational results reported in Tables 2–6, this

simple approach should be able to find an optimal solu-
tion on all instances without having to compute LB.

The computational results achieved on the Long,
Mixed, Short, and Authentic by the NoLB approach
would clearly be the same as that already reported in
Tables 2–5 because the computing time taken by the
lower bounding procedure is on average less than a sec-
ond and a feasible solution with no shifts exists on all
these instances.

In Table 8, we compare the computational results
achievedon theRequired instancesby theexactmethod
proposed in this paper and by the NoLB approach. The
first five columns report the same information as that
already reported in Table 6 whereas the four columns
under the heading NoLB indicate the computing time
to solve model (29)–(35) (T0), the number of instances
solved to optimality (Opt), the computing time to solve
model (36)–(49) (T10), and the total computing time
(Ttot), where Ttot � T0 +T10. A time limit of one hourwas
imposed on eachmodel.

Table 8 clearly shows the benefits of computing the
lower bound LB. The proposed exact method that com-
putes LB could solve 64 of the 81 Required instances
whereas the NoLB approach could close only nine
instances.We also note that the average computing time

Roberti and Pacino: Decomposition Method for Container Stowage Planning
Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS 1461

Table 8. Computational Results on Required Instances With
andWithout Computing Lower Bound LB

With LB NoLB

n r̄ c̄ Opt Ttot T0 Opt T10 Ttot

6 6 100 3 0 0 2 1,458 1,458
6 6 300 3 65 556 2 1,256 1,813
6 6 500 3 11 2,478 0 3,600 6,078
6 8 100 3 3 9 0 3,600 3,609
6 8 300 3 6 239 1 2,406 2,645
6 8 500 3 220 1,222 0 3,600 4,822
6 10 100 3 5 37 2 1,614 1,651
6 10 300 3 2 1,987 0 3,600 5,587
6 10 500 3 128 79 0 3,600 3,679
8 6 100 3 132 620 0 3,600 4,220
8 6 300 3 47 3,600 0 3,600 7,200
8 6 500 3 840 2,402 1 2,950 5,351
8 8 100 3 68 1,268 0 3,600 4,868
8 8 300 2 2,393 3,600 0 3,600 7,200
8 8 500 1 2,559 3,600 0 3,600 7,200
8 10 100 2 1,270 2,163 0 3,600 5,763
8 10 300 2 1,270 2,401 0 3,600 6,001
8 10 500 2 2,299 3,600 0 3,600 7,200
10 6 100 3 28 2,400 1 2,414 4,814
10 6 300 2 1,383 3,600 0 3,600 7,200
10 6 500 1 2,459 2,430 0 3,600 6,030
10 8 100 1 2,424 1,434 0 3,600 5,034
10 8 300 2 1,814 3,600 0 3,600 7,200
10 8 500 2 2,125 3,600 0 3,600 7,200
10 10 100 2 1,506 1,882 0 3,600 5,482
10 10 300 2 1,747 2,407 0 3,600 6,007
10 10 500 1 2,416 3,600 0 3,600 7,200
Avg 1,008 2,030 3,248 5,278
Solved 64 9

to prove that no feasible solution with no shifts exists is
already twice as much as the time to find the optimal
solution.Moreover, we can see that the computing time
to solve model (36)–(49) by setting |CY | � 10 is signifi-
cantly higher than the time to find an optimal solution
with the proposed exact method.

9. Conclusions
We have considered the container stowage planning prob-
lem (CSPP) where the number of loading and unload-
ing movements of containers stowed in a ship visiting
a predefined ordered sequence of ports has to be min-
imized. The CSPP has been previously addressed with
heuristics and compactmixed-integer programmingmod-
els. Nonetheless, finding an optimal solution or even a
good lower bound is an open problem even for small-
sized instances.
We have introduced a combinatorial lower bound

and a novel MIP model whose linear relaxation pro-
vides high-quality lower bounds. An efficient bound-
ing procedure to compute such lower bounds has been
proposed. The bounding procedure has been embed-
ded into a simple yet effective solution method to find
an optimal stowage plan.

Computational results have shown that the proposed
solution method outperforms the methods available
from the literature and that the optimal solutions of
test instances with up to 10 ports and 5,000 TEU can be
found in a fewminutes of computing time.

Many operational constraints arising in real-life
CSPPs have not been considered in the basic CSPP
addressed in this paper, but we believe that the pro-
posed formulation and the solution method could be
successfully extended to handle a wide variety of oper-
ational constraints. The feasibility of stack plans can be
defined to handle, for example, containers of different
size, weight, and type, stacks of different size, the fact
that ships are never empty, and other operational con-
straints related to a single stack; moreover, the feasibil-
ity of port layouts canbedefined tohandle, for example,
ship stability constraints and other constraints involv-
ing multiple bays or stacks. Changing the definition
of stack plans and port layout would naturally require
to properly adapt the different algorithms to solve the
pricing problems to use the proposed formulation (or
some extensions of it) to find optimal stowage plans.
Investigating all these possible extensions of the pro-
posed formulation and solution method is beyond the
scope of this paper, but we consider it as a promis-
ing avenue for future research on the topic. We also
believe that the insight on the basic CSPP provided by
this paper can be of inspiration to solve stowage plan-
ningproblems similar to the problems facedby stowage
planners in practice.

Acknowledgments
The authors are grateful to the anonymous referees for their
comments that improved the presentation of the paper.

References
Alves C, Valerio de Carvalho JM (2008) A stabilized branch-and-

price-and-cut algorithm for the multiple length cutting stock
problem. Comput. Oper. Res. 35(4):1315–1328.

Ambrosino D, Paolucci M, Sciomachen A (2015) Experimental eval-
uation of mixed integer programming models for the multi-
port master bay plan problem. Flexible Services Manufacturing J.
27(2–3):–284.

Ambrosino D, PaolucciM, SciomachenA (2017) Computational eval-
uation of a MIP model for multi-port stowage planning prob-
lems. Soft Comput. 21(7):1753–1763.

Ambrosino D, Sciomachen A, Tanfani E (2004) Stowing a container-
ship: The master bay plan problem. Transportation Res. Part A:
Policy Practice 38(2):81–99.

Ambrosino D, Sciomachen A, Tanfani E (2006) A decomposition
heuristics for the container ship stowage problem. J. Heuristics
12(3):211–233.

AmbrosinoD, AnghinolfiD, PaolucciM, SciomachenA (2009) A new
three-step heuristic for the master bay plan problem. Maritime
Econom. Logist. 11(1):98–120.

Aslidis A (1990) Minimizing of overstowage in containership opera-
tions. Oper. Res. 90:457–471.

Avriel M, Penn M (1993) Exact and approximate solutions of the
container ship stowage problem. Comput. Indust. Engrg. 25(1–4):
271–274.

Avriel M, Penn M, Shpirer N (2000) Container ship stowage prob-
lem: Complexity and connection to the coloring of circle graphs.
Discrete Appl. Math. 103(1–3):271–279.

Roberti and Pacino: Decomposition Method for Container Stowage Planning
1462 Transportation Science, 2018, vol. 52, no. 6, pp. 1444–1462, ©2018 INFORMS

Avriel M, Penn M, Shpirer N, Witteboon S (1998) Stowage planning
for container ships to reduce the number of shifts. Ann. Oper.
Res. 76(1–4):55–71.

Ben Amor H, Desrosiers J, Valerio de Carvalho JM (2006) Dual-
optimal inequalities for stabilized column generation. Oper. Res.
54(3):454–463.

Botter RC, Brinati MA (1992) Stowage container planning: A model
for getting an optimal solution. Vieria CB, Martins P, Kuo C,
eds. Proc. IFIP TC5/WG5.6 Seventh Internat. Conf. Comput. Appl.
Automation Shipyard Operation Ship Design, VII (North-Holland,
Amsterdam), 217–229.

Clautiaux F, Alves C, Valerio de Carvalho JM, Rietz J (2011) New sta-
bilization procedures for the cutting stock problem. INFORMS
J. Comput. 23(4):530–545.

Delgado A, Jensen RM, Janstrup K, Trine Høyer R, Andersen
KH (2012) A constraint programming model for fast opti-
mal stowage of container vessel bays. Eur. J. Oper. Res. 220(1):
251–261.

Ding D, Chou MC (2015) Stowage planning for container ships: A
heuristic algorithm to reduce the number of shifts. Eur. J. Oper.
Res. 246(1):242–249.

Dubrovsky O, Levitin G, Penn M (2002) A genetic algorithm with a
compact solution encoding for the container ship stowage prob-
lem. J. Heuristics 8(6):585–599.

Kang JG, Kim YD (2002) Stowage planning in maritime container
transportation. J. Oper. Res. Soc. 53(4):415–426.

Levison M (2010) The Box: How the Shipping Container Made the World
Smaller and the World Economy Bigger (Princeton University Press,
Princeton, NJ).

Pacino D, Jensen RM (2013) Fast slot planning using constraint-based
local search. Yang G-C, Ao S-I, Huang X, Castillo O, eds. IAENG
Transactions on Engineering Technologies: Special Issue of the Inter-
national Multi Conference of Engineers and Computer Scientists 2012
(Springer, Dordrecht, Netherlands), 49–63.

PacinoD,DelgadoA, JensenRM, Bebbington T (2011) Fast generation
of near-optimal plans for eco-efficient stowage of large container
vessels. Böse JW, Hu H, Jahn C, Shi X, Stahlbock R, Voß S, eds.
Comput. Logist. (ICCL11), Lecture Notes Comput. Sci., Vol. 6971
(Springer, Berlin Heidelberg), 286–301.

Pacino D, Delgado A, Jensen RM, Bebbington T (2012) An accurate
model for seaworthy container vessel stowage planning with
ballast tanks. Hu H, Shi X, Stahlbock R, Voß S, eds. Comput.
Logist. (ICCL12), LectureNotes Comput. Sci., Vol. 7555 (Springer,
Berlin Heidelberg), 17–32.

SciomachenA, Tanfani E (2003) Themaster bay plan problem:A solu-
tion method based on its connection to the three dimensional
bin packing problem. IMA J. Management Math. 14(3):251–269.

Sciomachen A, Tanfani E (2007) A 3D-BPP approach for optimis-
ing stowage plans and terminal productivity. Eur. J. Oper. Res.
183(3):1433–1446.

Tierney K, Pacino D, Jensen RM (2014) On the complexity of
container stowage planning problems. Discrete Appl. Math.
169(May):225–230.

UNCTAD (2015) Review of maritime transport 2014. United Nations
Conference on Trade and Development, Geneva.

Wilson ID, Roach PA (1999) Principles of combinatorial optimiza-
tion applied to container-ship stowage planning. J. Heuristics
5(4):403–418.

	Introduction
	Literature Review
	Literature on the CSPP
	Literature on Rich Stowage Planning Problems

	Problem Definition
	A Novel Mathematical Formulation
	Solving the Linear Relaxation of the New Formulation
	An MIP Model to Price Out Stack Plans
	An MIP Model to Price Out Port Layouts

	A Lower Bounding Procedure Based on the New Formulation
	Initializing the Restricted Master Problem
	A Combinatorial Lower Bound
	Stabilizing the Master Problem
	Heuristic Algorithms for Pricing Problems
	Procedure HeuX1.
	Procedure HeuX2.
	Procedure HeuY.

	Finding an Optimal Stowage Plan
	Finding an Optimal Stowage Plan Without Shifts
	Finding an Optimal Stowage Plan with Shifts

	Computational Results
	Test Instances
	Performance Analysis
	Impact of the Stabilization Technique
	Impact of the Lower Bounding Procedure

	Conclusions

