116 research outputs found
Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene
For most optoelectronic applications of graphene a thorough understanding of
the processes that govern energy relaxation of photoexcited carriers is
essential. The ultrafast energy relaxation in graphene occurs through two
competing pathways: carrier-carrier scattering -- creating an elevated carrier
temperature -- and optical phonon emission. At present, it is not clear what
determines the dominating relaxation pathway. Here we reach a unifying picture
of the ultrafast energy relaxation by investigating the terahertz
photoconductivity, while varying the Fermi energy, photon energy, and fluence
over a wide range. We find that sufficiently low fluence ( 4
J/cm) in conjunction with sufficiently high Fermi energy (
0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier
scattering, which leads to efficient carrier heating. Upon increasing the
fluence or decreasing the Fermi energy, the carrier heating efficiency
decreases, presumably due to energy relaxation that becomes increasingly
dominated by phonon emission. Carrier heating through carrier-carrier
scattering accounts for the negative photoconductivity for doped graphene
observed at terahertz frequencies. We present a simple model that reproduces
the data for a wide range of Fermi levels and excitation energies, and allows
us to qualitatively assess how the branching ratio between the two distinct
relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201
Photocurrent measurements of supercollision cooling in graphene
The cooling of hot electrons in graphene is the critical process underlying
the operation of exciting new graphene-based optoelectronic and plasmonic
devices, but the nature of this cooling is controversial. We extract the hot
electron cooling rate near the Fermi level by using graphene as novel
photothermal thermometer that measures the electron temperature () as it
cools dynamically. We find the photocurrent generated from graphene
junctions is well described by the energy dissipation rate , where the heat capacity is and is the
base lattice temperature. These results are in disagreement with predictions of
electron-phonon emission in a disorder-free graphene system, but in excellent
quantitative agreement with recent predictions of a disorder-enhanced
supercollision (SC) cooling mechanism. We find that the SC model provides a
complete and unified picture of energy loss near the Fermi level over the wide
range of electronic (15 to 3000 K) and lattice (10 to 295 K) temperatures
investigated.Comment: 7pages, 5 figure
Photoexcitation cascade and multiple hot-carrier generation in graphene
The conversion of light into free electron–hole pairs constitutes the key process in the fields of photodetection and photovoltaics. The efficiency of this process depends on the competition of different relaxation pathways and can be greatly enhanced when photoexcited carriers do not lose energy as heat, but instead transfer their excess energy into the production of additional electron–hole pairs through carrier–carrier scattering processes. Here we use optical pump–terahertz probe measurements to probe different pathways contributing to the ultrafast energy relaxation of photoexcited carriers. Our results indicate that carrier–carrier scattering is highly efficient, prevailing over optical-phonon emission in a wide range of photon wavelengths and leading to the production of secondary hot electrons originating from the conduction band. As hot electrons in graphene can drive currents, multiple hot-carrier generation makes graphene a promising material for highly efficient broadband extraction of light energy into electronic degrees of freedom, enabling high-efficiency optoelectronic applications.United States. Office of Naval Research (Grant N00014-09-1-0724
Intrinsic response time of graphene photodetectors
Graphene-based photodetectors are promising new devices for high-speed
optoelectronic applications. However, despite recent efforts, it is not clear
what determines the ultimate speed limit of these devices. Here, we present
measurements of the intrinsic response time of metal-graphene-metal
photodetectors with monolayer graphene using an optical correlation technique
with ultrashort laser pulses. We obtain a response time of 2.1 ps that is
mainly given by the short lifetime of the photogenerated carriers. This time
translates into a bandwidth of ~262 GHz. Moreover, we investigate the
dependence of the response time on gate voltage and illumination laser power
Graphene Photonics and Optoelectronics
The richness of optical and electronic properties of graphene attracts
enormous interest. Graphene has high mobility and optical transparency, in
addition to flexibility, robustness and environmental stability. So far, the
main focus has been on fundamental physics and electronic devices. However, we
believe its true potential to be in photonics and optoelectronics, where the
combination of its unique optical and electronic properties can be fully
exploited, even in the absence of a bandgap, and the linear dispersion of the
Dirac electrons enables ultra-wide-band tunability. The rise of graphene in
photonics and optoelectronics is shown by several recent results, ranging from
solar cells and light emitting devices, to touch screens, photodetectors and
ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
Detection of HHV-5 HHV-6a HHV-6b and HHV-7 in the urine: potential use as a non-invasive diagnostic tool for immune profiling
Decline in immune function with age has been studied extensively, but approaches to immune restoration have been hampered by the lack of simple methods of identifying individuals whose immune system is in decline. Our approach has been to identify individuals whose immune decline has led to a loss of control of common latent viral infections and their consequent reactivation. Viruses excreted in urine were detected and quantified and we believe this approach could provide a 'surrogate marker' for identifying immune compromised individuals.Here we report the detection of human herpes virus (HHV) 5, 6a, 6b and 7 in the urine of healthy individuals over a wide age range and their correlation with T cell receptor excision circle (TREC) data. The results did not show a clear correlation between TREC values and the detection of individual specific viruses or viral load values when measured singly.However, a correlation was found between low TREC values and the detection of several different human herpes viruses in the urine in males. We present evidence suggesting that for males, the detection of three or more different human herpes viruses in the urine could identify individuals with declining immune function as evidenced by their significantly lower TREC levels
Nutritional Factors Modulating Alu Methylation inan Italian Sample from The Mark-Age StudyIncluding Offspring of Healthy Nonagenarians
Alu hypomethylation promotes genomic instability and is associated with aging and
age-related diseases. Dietary factors affect global DNA methylation, leading to
changes in genomic stability and gene expression with an impact on longevity and
the risk of disease. This preliminary study aims to investigate the relationship
between nutritional factors, such as circulating trace elements, lipids and
antioxidants, and Alu methylation in elderly subjects and offspring of healthy
nonagenarians. Alu DNA methylation was analyzed in sixty RASIG (randomly
recruited age-stratified individuals from the general population) and thirty-two
GO (GeHA offspring) enrolled in Italy in the framework of the MARK-AGE project.
Factor analysis revealed a different clustering between Alu CpG1 and the other
CpG sites. RASIG over 65 years showed lower Alu CpG1 methylation than those of GO
subjects in the same age class. Moreover, Alu CpG1 methylation was associated
with fruit and whole-grain bread consumption, LDL2-Cholesterol and plasma copper.
The preserved Alu methylation status in GO, suggests Alu epigenetic changes as a
potential marker of aging. Our preliminary investigation shows that Alu
methylation may be affected by food rich in fibers and antioxidants, or
circulating LDL subfractions and plasma copper
An inter-laboratory validation of methods of lipidperoxidation measurement in UVA-treated human plasma samples
Recent Advancements in the LC- and GC-Based Analysis of Malondialdehyde (MDA): A Brief Overview
Malondialdehyde (MDA) is an end-product of lipid peroxidation and a side product of thromboxane A2 synthesis. Moreover, it is not only a frequently measured biomarker of oxidative stress, but its high reactivity and toxicity underline the fact that this molecule is more than “just” a biomarker. Additionally, MDA was proven to be a mutagenic substance. Having said this, it is evident that there is a major interest in the highly selective and sensitive analysis of this molecule in various matrices. In this review, we will provide a brief overview of the most recent developments and techniques for the liquid chromatography (LC) and gas chromatography (GC)-based analysis of MDA in different matrices. While the 2-thiobarbituric acid assay still is the most prominent methodology for determining MDA, several advanced techniques have evolved, including GC–MS(MS), LC–MS(MS) as well as several derivatization-based strategies
Association of Torquetenovirus Viremia with Physical Frailty and Cognitive Impairment in Three Independent European Cohorts
Introduction: Immunosenescence and inflammaging have been implicated in the pathophysiology of frailty. Torquetenovirus (TTV), a single-stranded DNA anellovirus, the major component of the human blood virome, shows an increased replication rate with advancing age. An elevated TTV viremia has been associated with an impaired immune function and an increased risk of mortality in the older population. The objective of this study was to analyze the relation between TTV viremia, physical frailty, and cognitive impairment. Methods: TTV viremia was measured in 1,131 nonfrail, 45 physically frail, and 113 cognitively impaired older adults recruited in the MARK-AGE study (overall mean age 64.7 ± 5.9 years), and then the results were checked in two other independent cohorts from Spain and Portugal, including 126 frail, 252 prefrail, and 141 nonfrail individuals (overall mean age: 77.5 ± 8.3 years). Results: TTV viremia ≥4log was associated with physical frailty (OR: 4.69; 95% CI: 2.06-10.67, p < 0.0001) and cognitive impairment (OR: 3.49, 95% CI: 2.14-5.69, p < 0.0001) in the MARK-AGE population. The association between TTV DNA load and frailty status was confirmed in the Spanish cohort, while a slight association with cognitive impairment was observed (OR: 1.33; 95% CI: 1.000-1.773), only in the unadjusted model. No association between TTV load and frailty or cognitive impairment was found in the Portuguese sample, although a negative association between TTV viremia and MMSE score was observed in Spanish and Portuguese females. Conclusions: These findings demonstrate an association between TTV viremia and physical frailty, while the association with cognitive impairment was observed only in the younger population from the MARK-AGE study. Further research is necessary to clarify TTV's clinical relevance in the onset and progression of frailty and cognitive decline in older individuals
- …
