99 research outputs found

    Evaluation and application of summary statistic imputation to discover new height-associated loci.

    Get PDF
    As most of the heritability of complex traits is attributed to common and low frequency genetic variants, imputing them by combining genotyping chips and large sequenced reference panels is the most cost-effective approach to discover the genetic basis of these traits. Association summary statistics from genome-wide meta-analyses are available for hundreds of traits. Updating these to ever-increasing reference panels is very cumbersome as it requires reimputation of the genetic data, rerunning the association scan, and meta-analysing the results. A much more efficient method is to directly impute the summary statistics, termed as summary statistics imputation, which we improved to accommodate variable sample size across SNVs. Its performance relative to genotype imputation and practical utility has not yet been fully investigated. To this end, we compared the two approaches on real (genotyped and imputed) data from 120K samples from the UK Biobank and show that, genotype imputation boasts a 3- to 5-fold lower root-mean-square error, and better distinguishes true associations from null ones: We observed the largest differences in power for variants with low minor allele frequency and low imputation quality. For fixed false positive rates of 0.001, 0.01, 0.05, using summary statistics imputation yielded a decrease in statistical power by 9, 43 and 35%, respectively. To test its capacity to discover novel associations, we applied summary statistics imputation to the GIANT height meta-analysis summary statistics covering HapMap variants, and identified 34 novel loci, 19 of which replicated using data in the UK Biobank. Additionally, we successfully replicated 55 out of the 111 variants published in an exome chip study. Our study demonstrates that summary statistics imputation is a very efficient and cost-effective way to identify and fine-map trait-associated loci. Moreover, the ability to impute summary statistics is important for follow-up analyses, such as Mendelian randomisation or LD-score regression

    Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits.

    Get PDF
    Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene-trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2, known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits

    PEXO : a global modeling framework for nanosecond timing, microsecond astrometry, and μm/s radial velocities

    Get PDF
    54 pages, 2 tables, 19 figures, accepted for publication in ApJS, PEXO is available at https://github.com/phillippro/pexoThe ability to make independent detections of the signatures of exoplanets with complementary telescopes and instruments brings a new potential for robust identification of exoplanets and precision characterization. We introduce PEXO, a package for Precise EXOplanetology to facilitate the efficient modeling of timing, astrometry, and radial velocity data, which will benefit not only exoplanet science but also various astrophysical studies in general. PEXO is general enough to account for binary motion and stellar reflex motions induced by planetary companions and is precise enough to treat various relativistic effects both in the solar system and in the target system. We also model the post-Newtonian barycentric motion for future tests of general relativity in extrasolar systems. We benchmark PEXO with the pulsar timing package TEMPO2 and find that PEXO produces numerically similar results with timing precision of about 1 ns, space-based astrometry to a precision of 1{\mu}as, and radial velocity of 1 {\mu}m/s and improves on TEMPO2 for decade-long timing data of nearby targets, due to its consideration of third-order terms of Roemer delay. PEXO is able to avoid the bias introduced by decoupling the target system and the solar system and to account for the atmospheric effects which set a practical limit for ground-based radial velocities close to 1 cm/s. Considering the various caveats in barycentric correction and ancillary data required to realize cm/s modeling, we recommend the preservation of original observational data. The PEXO modeling package is available at GitHub (https://github.com/phillippro/pexo).Peer reviewe

    Human genomics of the humoral immune response against polyomaviruses

    Get PDF
    Publisher Copyright: © The Author(s) 2021. Published by Oxford University Press.Human polyomaviruses are widespread in humans and can cause severe disease in immunocompromised individuals. To identify human genetic determinants of the humoral immune response against polyomaviruses, we performed genome-wide association studies and meta-analyses of qualitative and quantitative immunoglobulin G responses against BK polyomavirus (BKPyV), JC polyomavirus (JCPyV), Merkel cellpolyomavirus (MCPyV), WU polyomavirus (WUPyV), and human polyomavirus 6 (HPyV6) in 15,660 individuals of European ancestry from three independent studies. We observed significant associations for all tested viruses: JCPyV, HPyV6, and MCPyV associated with human leukocyte antigen class II variation, BKPyV and JCPyV with variants in FUT2, responsible for secretor status, MCPyV with variants in STING1, involved in interferon induction, and WUPyV with a functional variant in MUC1, previously associated with risk for gastric cancer. These results provide insights into the genetic control of a family of very prevalent human viruses, highlighting genes and pathways that play a modulating role in human humoral immunity.Peer reviewe

    Cascade oxime formation, cyclization to a nitrone, and intermolecular dipolar cycloaddition.

    Get PDF
    Simple haloaldehydes, including enolisable aldehydes, were found to be suitable for the formation of cyclic products by cascade (domino) condensation, cyclisation, dipolar cycloaddition chemistry. This multi-component reaction approach to heterocyclic compounds was explored by using hydroxylamine, a selection of aldehydes, and a selection of activated dipolarophiles. Initial condensation gives intermediate oximes that undergo cyclisation with displacement of halide to give intermediate nitrones; these nitrones undergo in situ intermolecular dipolar cycloaddition reactions to give isoxazolidines. The cycloadducts from using dimethyl fumarate were treated with zinc/acetic acid to give lactam products and this provides an easy way to prepare pyrrolizinones, indolizinones, and pyrrolo[2,1-a]isoquinolinones. The chemistry is illustrated with a very short synthesis of the pyrrolizidine alkaloid macronecine and a formal synthesis of petasinecine

    IL1B and DEFB1 Polymorphisms Increase Susceptibility to Invasive Mold Infection After Solid-Organ Transplantation

    Get PDF
    Background. Single-nucleotide polymorphisms (SNPs) in immune genes have been associated with susceptibility to invasive mold infection (IMI) among hematopoietic stem cell but not solid-organ transplant (SOT) recipients. Methods. Twenty-four SNPs from systematically selected genes were genotyped among 1101 SOT recipients (715 kidney transplant recipients, 190 liver transplant recipients, 102 lung transplant recipients, 79 heart transplant recipients, and 15 recipients of other transplants) from the Swiss Transplant Cohort Study. Association between SNPs and the end point were assessed by log-rank test and Cox regression models. Cytokine production upon Aspergillus stimulation was measured by enzyme-linked immunosorbent assay in peripheral blood mononuclear cells (PBMCs) from healthy volunteers and correlated with relevant genotypes. Results. Mold colonization (n = 45) and proven/probable IMI (n = 26) were associated with polymorphisms in the genes encoding interleukin 1β (IL1B; rs16944; recessive mode, P = .001 for colonization and P = .00005 for IMI, by the log-rank test), interleukin 1 receptor antagonist (IL1RN; rs419598; P = .01 and P = .02, respectively), and β-defensin 1 (DEFB1; rs1800972; P = .001 and P = .0002, respectively). The associations with IL1B and DEFB1 remained significant in a multivariate regression model (P = .002 for IL1B rs16944; P = .01 for DEFB1 rs1800972). The presence of 2 copies of the rare allele of rs16944 or rs419598 was associated with reduced Aspergillus-induced interleukin 1β and tumor necrosis factor α secretion by PBMCs. Conclusions. Functional polymorphisms in IL1B and DEFB1 influence susceptibility to mold infection in SOT recipients. This observation may contribute to individual risk stratificatio

    The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study

    Get PDF
    Corrected by Erratum: Correction: The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study, in PLoS Genetics,12(6):e1006166. The arcOGEN Consortium should be listed as an author of this article.Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Thomas W. Winkler ... Lyle J Palmer ... CHARGE Consortium, DIAGRAM Consortium, GLGC Consortium, Global-BPGen Consortium, ICBP Consortium, MAGIC Consortium ... et al

    The effect of EGM2008-based normal, normal-orthometric and Helmert orthometric height systems on the Australian levelling network

    Get PDF
    This paper investigates the normal-orthometric correction used in the definition of the Australian Height Datum, and also computes and evaluates normal and Helmert orthometric corrections for the Australian National Levelling Network (ANLN). Testing these corrections in Australia is important to establish which height system is most appropriate for any new Australian vertical datum. An approximate approach to assigning gravity values to ANLN benchmarks (BMs) is used, where the EGM2008-modelled gravity field is used to "re-construct" observed gravity at the BMs. Network loop closures (for first- and second-order levelling) indicate reduced misclosures for all height corrections considered, particularly in the mountainous regions of south eastern Australia. Differences between Helmert orthometric and normal-orthometric heights reach 44 cm in the Australian Alps, and differences between Helmert orthometric and normal heights are about 26 cm in the same region. Normal orthometric heights differ from normal heights by up to 18 cm in mountainous regions >2,000 m. This indicates that the quasigeoid is not compatible with normal-orthometric heights in Australia
    corecore