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Abstract
Genome-wide association studies (GWAS) have identified more than 100 genetic variants

contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI,

WHRadjBMI), a measure of body shape. Body size and shape change as people grow older

and these changes differ substantially between men and women. To systematically screen

for age- and/or sex-specific effects of genetic variants on BMI andWHRadjBMI, we performed

meta-analyses of 114 studies (up to 320,485 individuals of European descent) with

genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric

Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with

BMI and WHRadjBMI in four strata (men�50y, men >50y, women�50y, women >50y) and

summary statistics were combined in stratum-specific meta-analyses. We then screened

for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or

age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we

identified 15 loci (11 previously established for main effects, four novel) that showed signifi-

cant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than

in older adults (�50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we

identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific

effects, of which 28 showed larger effects in women than in men, five showed larger effects

in men than in women, and 11 showed opposite effects between sexes. No age-dependent

effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analy-

sis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we

confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide
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further insights into the biology that underlies weight change with age or the sexually dimor-

phism of body shape.

Author Summary

Adult body size and body shape differ substantially between men and women and change
over time. More than 100 genetic variants that influence body mass index (measure of
body size) or waist-to-hip ratio (measure of body shape) have been identified. While
there is evidence that some genetic loci affect body shape differently in men than in
women, little is known about whether genetic effects differ in older compared to younger
adults, and whether such changes differ between men and women. Therefore, we con-
ducted a systematic genome-wide search, including 114 studies (>320,000 individuals), to
specifically identify genetic loci with age- and or sex-dependent effects on body size and
shape. We identified 15 loci of which the effect on BMI was different in older compared to
younger adults, whereas we found no evidence for loci with different effects in men com-
pared to women. The opposite was seen for body shape as we identified 44 loci of which
the effect on waist-to-hip ratio differed between men and women, but no difference
between younger and older adults were observed. Our observations may provide new
insights into the biology that underlies weight change with age or the sexual dimorphism
of body shape.

Introduction
Body size and shape are independent risk factors for morbidity and mortality [1–6]. They
change as people grow older and these changes differ substantially between men and women
[7–12]. Subtle sexual dimorphisms are already apparent during early childhood, but differences
become more apparent during puberty due, at least in part, to the increasing influence of sex
steroid hormones [12–14]. After puberty, sex-differences are largely maintained over the adult
life-course. As women age a decline in sex steroid hormones, which coincides with menopause,
affects their body shape and composition, resulting in a more android fat distribution [8, 12,
15]. When younger, women tend towards an hourglass body shape with gynoid fat distribution,
storing proportionally more fat at thighs and hip than around the waist [12, 16, 17]. At a later
age, often after menopause, women’s fat storage shifts more upwards around the waist [12, 16,
17]. In men, changes in body fat distribution are subtler than in women, showing a slow but
steady increase in waist circumference with age [12]. Thus, after the menopause, the sex-differ-
ences in body shape between men and women decrease [12].

This intricate interplay between age and sex on body size and shape is driven by underlying
biological processes, involving environmental and genetic factors [7–12, 15]. Elucidating sex-
and age-specific genetic effects on body size and shape may provide insights into the biological
processes that are involved in the regulation of body weight and fat distribution.

More than 100 genetic loci have been identified for body mass index (BMI), a measure for
body size, and for waist-to-hip ratio adjusted for BMI (WHRadjBMI), a measure of body shape,
most of which were identified through our own work in the Genetic Investigation of ANthro-
pometric Traits (GIANT) Consortium [18, 19]. In a recent sex-stratified genome-wide associa-
tion meta-analysis (up to 133,723 individuals in discovery stage), we searched for variants with
sex-specific effects on BMI and WHRadjBMI and identified several loci for which the association
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with WHRadjBMI differed between men and women, whereas no such loci were observed for
BMI [10]. However, so far, no GWAS efforts have aimed to identify genetic loci that contribute
to differences in body size and shape observed in younger versus older adults, particularly
across the menopausal period in women.

We conducted a genome-wide search for loci that exhibit age- and/or sex-specific differ-
ences in BMI andWHRadjBMI. For this, we utilized study-specific genome-wide association sta-
tistics separately by sex and by two age groups in each of the studies participating in the
GIANT consortium. The two age groups focus on those below and above 50 years of age, as
this cut-off coincides with the average age at which women transition through menopause and
experience changes in body fat distribution [20–25]. We hypothesize that genetic loci may con-
tribute to the observed differences in body size/shape before age 50y and after age 50y, and that
these differences may be sex-specific.

Results

Stratified GWAS identifies age- and sex-specific loci for BMI and
WHRadjBMI

Our total sample comprised up to 320,485 adults (�18y) of European ancestry from 114 stud-
ies with genome-wide array data imputed to the HapMap reference or genotyped Illumina
Metabochip array data including up to 2.8 million autosomal variants. Details on study-specific
analyses, genotyping methods and phenotypic descriptives are given in S1–S3 Tables. To sys-
tematically search for genetic loci that influence body size or shape in an age- and sex-specific
manner, we first conducted study-specific GWA analyses for BMI andWHRadjBMI by four
strata (men�50y, men>50y, women�50y, women>50y), and subsequently performed strat-
ified meta-analyses (comprising up to 50,095 men�50y, 93,201 men>50y, 70,692 women
�50y, and 106,497 women>50y) and derived pooled stratum-specific association results
(Pmen�50, Pmen>50, Pwomen�50, Pwomen>50) for each trait. This strategy allowed us to test for
three types of interactions: (1) SNPs that demonstrate age-specific effects (SNP x AGE, Pagediff),
(2) SNPs that show sex-specific effects (SNP x SEX, Psexdiff), and (3) SNPs that show age-spe-
cific effects that differ between men and women (SNP x AGE x SEX, Pagesexdiff). We first per-
formed genome-wide screens using an a priori filter; i.e. we examined interaction effects on
SNPs that showed evidence of an overall main-effect association (POverall < 10−5). This screen
is known to have better power to identify loci with age- or sex-specific effects that are direction-
ally concordant [10, 26]. In a second screen, we examined interaction effects for all SNPs, irre-
spective of their main-effect association, which allows identification of loci with opposite effect
direction in older vs younger adults or in men vs women.

As such, 15 loci with age-specific effects for BMI and 44 loci with sex-specific effects for
WHRadjBMI reached significance after accounting for multiple testing (controlling false-discov-
ery rate, FDR<5%) (Figs 1 and S1). No loci were identified with evidence for three way SNP x
AGE x SEX interaction.

In addition to the stratum-specific meta-analyses, we performed (a) amain effectmeta-anal-
ysis that combined the four pooled effect estimates (one from each stratum), providing results
for the overall association (POverall), assuming effects in age- and sex-groups are the same, and
(b) a joint (main + interaction) meta-analysis approach (Pjoint) allowing for simultaneous test-
ing of overall association, SNP-by-age and SNP-by-sex interactions [27]. These two screens
revealed 83 novel loci of which the association with BMI or WHRadjBMI reached genome-wide
significance (P<5x10-8) (S2 Fig). This extended discovery is enabled through power augmen-
tation achieved by simultaneously testing main and interaction effects, and/or by accounting
for potentially different effects of age and sex on the respective phenotype in the four strata.
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BMI-novel loci with differential effects in younger and older individuals
Among the 15 loci with significantly different effects (at 5% FDR) on BMI in the younger ver-
sus the older individuals, four were novel (near COBLL1, DDC, SLC22A3 and CBLN4) and 11
were previously established as BMI loci in large-scalemain effect GWAmeta-analyses (near
NEGR1, TNNI3K, SEC16B, TMEM18, ADCY3, AC016194.1, TCF7L2, STK33, FTO,MC4R,
APOC1) (S3 Fig and Tables 1 and S4) [19, 28]. Eleven of the 15 age-dependent BMI loci (73%,
Pbinomial = 0.06 for divergence from 50%) showed stronger effects in the younger than in the
older group, while the four remaining loci had effects that were more pronounced in the older
than in the younger group (Figs 2 and S4). We did not identify BMI-associated loci that
showed effects in opposite direction between the younger versus the older group, nor did we
find any sex-specific BMI effects. A sensitivity analysis excluding studies with self-report BMI
found similar results (S5 Fig).

Fig 1. Interaction QQ plots.Quantile-Quantile plots showing P-Values for age-difference (Pagediff, green), sex-difference (Psexdiff, blue) and age- and sex-
difference (Pagesexdiff, purple). For BMI the P-Values are depicted for all SNPs genome-wide (A) as well as for a limited subset of SNPs that survived pre-
filtering on the overall association with BMI, POverall < 1x10-5 (B). For WHRadjBMI the P-Values are depicted for all SNPs genome-wide (C) as well as for a
limited subset of SNPs that survived pre-filtering on the overall association with WHRadjBMI, POverall < 1x10-5 (D).

doi:10.1371/journal.pgen.1005378.g001
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WHRadjBMI–additional genetic loci contribute to differences between
men and women
Unlike for BMI, no WHRadjBMI-associated loci with significant difference between the age-
groups were observed. Yet, 44 loci showed significantly different effects onWHRadjBMI between
women and men of which 17 loci were novel (near TTN, IRS1, CDH10, IQGAP2, SIM1, ISPD,
KLF14, SGCZ, PTPRD, RXRA, GANAB, SLC2A3, LEMD3, GNPNAT1, RPS6KA5, CECR2,
HMGXB4) and 27 loci had been previously established inmain-effect GWAmeta-analyses for
WHRadjBMI (S6 Fig and Tables 2 and S5). Of the 27 previously established WHRadjBMI loci,
sex-differences had already been reported for 17 loci [10, 29] [18]. Our genome-wide screen
established sex-specific effects for an additional 10 of the previously established loci with a
main-effect on WHRadjBMI (near GORAB, LY86, ITPR2, PIGU, EYA2, KCNJ2,MEIS, EYA1,
CCDC92, NSD1). Of the 44 sex-specific loci, 11 loci showed opposite effect directions in
women versus men and 33 showed a significant effect in one and a smaller or no effect in the
other sex. Consistent with previous observations, almost all of these 33 loci (28 out of the 33,
Pbinomial = 3.3x10-5) showed more pronounced effects in women than in men (Figs 3 and S7).
Again, a sensitivity analysis excluding studies with self-report waist and hip circumference
found similar results (S8 Fig).

No evidence for loci with simultaneous age- and sex-specific effects
We searched for loci with sex-specific effects on WHRadjBMI that differ between the two age-
groups and for loci with age-specific effect on BMI that differ between men and women by test-
ing a three-way interaction (SNP x AGE x SEX, Pagesexdiff). We first tested for this three-way
interaction in the 59 SNPs identified with an age-difference (15 loci for BMI) or a sex-differ-
ence (44 loci for WHRadjBMI), as described above. However, none of these 59 loci showed a

Table 1. Fifteen BMI loci showing significant age-differences in adults�50y compared to adults >50y. The table shows the age-group specific (sex-
combined) results, ordered by largest to smallest effect in adults�50y. All loci were detected by the screen on age-difference that included the a-priori filter
on POverall < 10−5. The age- and sex-specific results (four strata) and more detailed information on the loci are given in S4 Table.

Age � 50y Age > 50y

SNP Novel Locusa Nearest Gene Chr Pos AllelesbEA/OA EAF β P N β P N PAgediff

rs9936385 FTO 16 52376670 C/T 39% 0.093 4.5E-95 115,354 0.073 1.0E-97 197,478 1.6E-04

rs2867125 TMEM18 2 612827 C/T 83% 0.086 6.1E-49 112,934 0.051 2.3E-30 195,579 4.0E-07

rs12955983 MC4R 18 56023969 G/A 28% 0.068 1.7E-41 114,448 0.038 2.0E-23 196,590 6.7E-07

rs6737082 ADCY3 2 24991544 C/A 47% 0.046 6.3E-20 92,191 0.022 5.4E-09 162,112 4.7E-05

rs2821248 NEGR1 1 72348148 A/G 83% 0.042 8.4E-12 106,067 0.017 1.9E-04 188,322 6.2E-04

rs1514174 TNNI3K 1 74765651 C/T 43% 0.039 3.0E-15 92,120 0.012 1.7E-03 161,764 2.8E-06

rs591120 SEC16B 1 176169376 C/G 20% 0.033 4.9E-14 115,337 0.014 2.8E-05 197,481 3.1E-04

rs11908421 yes CBLN4 20 53813074 T/C 81% 0.033 8.7E-08 92,575 0.007 1.2E-01 162,284 4.3E-04

rs4947644 yes DDC 7 50586370 T/C 51% 0.030 7.7E-10 91,980 0.009 1.7E-02 158,555 2.5E-04

rs10840060 STK33 11 8456621 C/A 50% 0.029 3.8E-11 110,697 0.011 2.0E-03 187,808 4.0E-04

rs1459180 Intergeneic 8 77144822 G/T 58% 0.027 3.1E-09 112,913 0.009 1.6E-02 190,729 6.0E-04

rs17747324 TCF7L2 10 114742493 T/C 77% 0.004 4.8E-01 111,572 0.031 2.6E-13 193,773 4.7E-05

rs3127574 yes SLC22A3 6 160711360 C/G 51% 0.001 7.9E-01 113,057 0.019 2.3E-08 195,472 6.8E-04

rs3769885 yes COBLL1 2 165300636 A/G 48% -0.001 9.1E-01 107,703 0.020 3.9E-09 192,513 1.1E-04

rs4420638 APOC1 19 50114786 A/G 82% -0.007 3.6E-01 83,196 0.040 8.9E-12 152,014 2.1E-07

Chr: Chromosome; Pos: position; EAF: Effect Allele Frequency; EA: Effect allele; OA: Other allele
a
‘Yes’ if the locus is mentioned as BMI locus for the first time

b Effect allele is according to the BMI increasing allele according to the associated sex.

doi:10.1371/journal.pgen.1005378.t001
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significant three-way interaction (Pagesexdiff > 0.00084 = 0.05/59, Bonferroni corrected) (S4 and
S5 Tables). When screening for the three-way interaction genome-wide, no such loci were
identified (at 5% FDR) (Fig 1).

Detecting loci with age- or/and sex-interaction requires extremely large
sample sizes
We analytically computed the statistical power of our screens to identify SNP x AGE, SNP x
SEX or SNP x AGE x SEX interaction effects, assuming a total sample size of 300,000 individu-
als distributed across four equally sized strata and considering a range of effect size configura-
tions informed by previous observations (S9, S10 and S11 Figs). For example, for a medium
genetic effect on BMI (R2 = 0.037% as observed previously for a locus nearMAP2K5 [28]), our
screens had (i) sufficient power to identify genetic loci with two-way SNP x AGE or SNP x SEX
interactions (i.e. loci with effect in one stratum and not in the other, so-called pure two-way
interaction, power = 86%, or loci with effect in both strata, but with opposite effect direction,
power = 99%), (ii) sufficient power to detect extreme three-way interaction SNP x AGE x SEX,
typically involving a biologically-unlikely scenario with opposite effect directions across both
AGE and SEX (power = 99%), but (iii) insufficient power to identify loci with biologically more
plausible three-way interactions (in the range of R2 of 0.01–0.05%), i.e., loci that have an effect
in only one stratum and not in the other three strata, 1-stratum interaction, power = 2%, or
those with a similar effect in three strata and not in the fourth, 3-strata interaction,
power = 21% (Fig 4). Identification of loci with medium 1-stratum (R2 = 0.037% in one stra-
tum and R2 = 0 in the other three strata) or 3-strata (R2 = 0.037% in three strata and R2 = 0 in
one stratum) interaction effects with a power of 80%, would require a total sample size of
750,000 or 600,000 individuals, respectively.

Reducing the multiple testing burden by applying a filter on the overall meta-analysis to
first identify SNPs with main effects (POverall < 10−5) improved the statistical power to identify
loci with specific interaction scenarios: (i) loci with pure two-way interaction effects (e.g. 30%
power increase to detect SNP x AGE with R2 = 0.037% and R2 = 0 in the two strata), or (ii) loci
with 3-strata interaction effects (e.g. 21% power increase for loci with R2 = 0.037% in three
strata and R2 = 0 in one stratum) (Figs 4 and S9).

With our sample size of 300,000 subjects and equally sized strata we had 80% power to
detect (i) 1-stratum interaction with R² = 0.09% in one stratum (R² = 0 in the other three
strata), (ii) 3-strata interaction with R² = 0.07% in three strata (R² = 0 in one stratum), or (iii)
pure two-way interaction with R² = 0.03% in one stratum (R² = 0% in the other stratum).

In summary, this analysis suggests that our study is sufficiently powered to detect even sub-
tle two-way interaction effects, and would certainly include effect-sizes that would be consid-
ered biologically or clinically important. While even more subtle interactions may be
occurring, it appears likely that in this effort, we have detected the most important age- and
sex- interactions for body size and shape.

Association of identified loci with other traits
To examine whether the age- and sex-specific effects of the identified BMI and WHRadjBMI loci
translate into similar age- and sex-effects on obesity-related cardiometabolic traits, we gathered
results from the ICBP, CHARGE and Global-BPGen consortia (age-specific and sex-specific

Fig 2. Age-dependent BMI loci. Effect estimates (beta ±95CI) per standard deviation in BMI and risk allele for loci showing age-differences in men & women
�50y compared to men & women >50y. Loci are ordered by greater magnitude of effect in men & women�50y compared to men & women >50y. (95%CI:
95% confidence interval; BMI: body mass index; SD: standard deviation, *Newly identified loci).

doi:10.1371/journal.pgen.1005378.g002
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effects in blood pressure) [30], Global Lipids Genetics Consortium (GLGC) (sex-specific effects
in lipids) [31], DIAGRAM (sex-specific effects for type 2 diabetes) [32]and MAGIC (sex-spe-
cific effects of glycemic traits, personal communication) [33](S6–S10 Tables). Only CHARGE,
Global-BPGen and ICBP had previously performed GWAS searching for age-specific effects
on blood pressure [34]. None of the 15 age-specific BMI-associated loci influenced blood pres-
sure in an age-specific manner (PSNPxAGE > 0.0033 = 0.05/15) (S6 Table). Eight of the 44 sexu-
ally dimorphic WHRadjBMI loci show directionally consistent female-specific effects in other
traits (S10 Table), but none attained significant sex-difference (Psexdiff > 0.0011 = 0.05/44).

In addition, we performed a systematic search in the National Human Genome Research
Institute (NHGRI) GWAS Catalog (www.genome.gov/gwastudies) to examine previously
reported GWAS-associations for potential age- or sex-specificity for the loci we identified for
BMI andWHRadjBMI, respectively [35]. While no associations have been reported that corrob-
orate the sex- or age-specificity of our findings, largely because few sex-stratified and no age-
stratified genome-wide studies have been performed to date (this study is among the first
ones), many main-effect associations with a wide range of traits and disease have been reported
for our age- or sex-specific BMI or WHRadjBMI loci (S11 and S12 Tables). For example, the
four loci that showed a larger effect in the older group are known for their association with
type 2 diabetes (T2D, near TCF7L2 and COBLL1) or with coronary artery disease (CAD, near
SLC22A3 and APOC1). The fact that disease status may correlate both with age and obesity
traits may confound our age- or sex-specific findings. To reduce this possibility we repeated

Fig 3. Sex-dependent WHRadjBMI loci. Effect estimates (beta ± 95CI) per standard deviation in WHRadjBMI

and risk allele for loci showing sex-differences in women compared to men. Loci are ordered by greater
magnitude of effect in women compared to men. (95%CI: 95% confidence interval; SD: standard deviation.
*Newly identified loci. † Newly identified sex-differences)

doi:10.1371/journal.pgen.1005378.g003

Fig 4. Power heatplots. Power for the combination of screens and gain through a priori filtering for varying configurations of effect sizes across the 4 strata.
The figures illustrate (A) the power to detect age-difference, sex-difference or age-sex-difference in at least one of our scans (on Pagediff, Psexdiff and
Pagesexdiff, with and without a priori filtering); and (B) a power comparison, comparing approaches with and without a priori filtering on POverall < 1x10-5. We
here assume four equally sized strata and a total sample size of N = 300,000 (comparable to the sample size in our BMI analyses). We set bF�50y = 0.033
(corresponding to a known and mean BMI effect inMAP2K5 region with R2 = 0.037%), bM>50y = 0, and vary bF>50y and bM�50 on the axes. This strategy
allows us to cover the most interesting and plausible interaction effects: Two-way interactions, such as (i) pure age-difference (b�50y = 0.033, b>50y = 0) and
(ii) pure sex-difference (bF = 0.033, bM = 0); and three-way interactions, such as (iii) extreme three-way interaction with opposite direction across AGE and
SEX, (iv) 1-strata interaction (bF�50y = 0.033, bF>50y = bM�50y = bM>50y = 0), and (v) 3-strata interaction (bF�50y = bF>50y = bM�50y = 0.033, bM>50y = 0).

doi:10.1371/journal.pgen.1005378.g004
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the meta-analyses restricted to population-based samples (excluding all case-control studies)
and observed similar effect sizes compared to the original meta-analysis (S13 and S14 Tables).

Age-specific effects of BMI loci extend across the life course
We then examined whether the age-specific effects of the 15 BMI loci extend to younger ages
and across the life course by performing look-ups in (i) a GWAS for birth weight [36] and for
childhood obesity [37] from the Early Growth Genetics (EGG) Consortium, (ii) a GWAS for
BMI of individuals aged 16–25 years [38], and (iii) a GWAS for weight change during adult-
hood (personal communication).

We found no evidence of association with birth weight (N = 26,836) for any of our 15 age-
dependent BMI-associated loci (S15 Table) [36]. In contrast, we observed nominal significant
associations with risk of childhood obesity (N = 13,648) for 10 of the 11 variants with stronger
effect on BMI in the younger adults (Tables 3 and S16). The four loci that only showed associa-
tion with BMI in the older adults were not associated with childhood obesity risk (S16 Table)
[37].

Furthermore, nine of the 11 variants with stronger effect on BMI in the younger adults (18-
50y) showed directionally consistent association with increased BMI in the youngest 16–25y
age-group (N = 29,880, Tables 3 and S17). A more detailed experimental examination of effect
sizes across the three age-groups did not reveal significant trends (S12 Fig, S17 Table, and S1
Text).

Finally, we speculated that a higher genetic BMI effect in the younger adults would translate
into weight loss and a higher genetic BMI effect in the older adults would translate into weight
gain with increasing age (Methods). Five of the 15 loci with age-specific effects on BMI showed
a nominal significant association accompanied by the hypothesized direction on weight change
(N = 39,041, Tables 3 and S18).

In summary, the age-dependency of the 15 loci is supported by directionally consistent
enrichment of nominal significant associations (P< 0.05) with childhood obesity, with BMI in
the 16–25y age-group and with weight changes across adulthood (PBinomial ranging from 2.4 x
10−5 to 1.0 x 10−15, Table 3).

Table 3. Enrichment analyses using look-up data for the 15 age-group specific BMI loci. The look-up data is taken from the EGG consortium for birth
weight and for childhood obesity, and from personal communication for weight change trajectories. More details including SNP specific effect sizes or odds
ratios and association P-Values on the look-up trait can be found in S15 Table (for birth weight), S16 Table (for childhood obesity) and S18 Table (for weight
change).

Look-up data
set

Sample
size

#SNPs
tested

#SNPs concordant with the �50y vs
>50y association pattern

Pbinomial
a Loci with expected association pattern

Birth weight 26,836 11 0b >0.99 -

Childhood
obesity

13,648 11 10b 1.0 x
10−15

FTO, TMEM18, MC4R, ADCY3, NEGR1, TNNI3K,
SEC16B, CBLN4, DDC, STK33

16–25y age-
group

29,880 11 9b 2.0 x
10−13

FTO, TMEM18, MC4R, ADCY3, NEGR1, TNNI3K,
SEC16B, CBLN4, Intergeneic

Weight
change

39,041 15 5c 2.4 x 10−5 FTO, STK33, TCF7L2, SLC22A3, APOC1

a One-sided binomial P-values that test for enrichment of nominal significant and directionally consistent association in the look-up data.
b For the BMI increasing alleles of the 11 SNPs with stronger effect on BMI in �50y, we expect to see a nominal significant association with increased

birth weight, increased risk for childhood obesity and increased BMI in the 16–25y age-group.
c For the BMI increasing alleles of the 11 SNPs with stronger effect on BMI in �50y, we expect to see a nominal significant association with negative

effect on weight change (weight loss), and for the BMI increasing alleles of the four SNPs with stronger effect on BMI in >50y, we expect to see a nominal

significant association with positive effect on weight change (weight gain) (see Methods for details).

doi:10.1371/journal.pgen.1005378.t003
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eQTL analysis
eQTLs in humans. We performed sex-specific cis eQTL analyses in lymphoblastoid cell

lines of the combined Groningen and EGCUT studies (1,450 men and 910 women) [39, 40] for
the 44 SNPs showing sex-specific effects for WHRadjBMI to determine whether there is evidence
to support sex-specific regulatory effects of the index variants on adjacent gene expression.
Two SNP-gene associations displayed significant differences in genetic effects on expression
between men and women (FDR(PSexdiff)< 5% with and without initial filtering on overall
expression effects):rs6088552–ACSS2 and rs6088735–MYH7B (S19 Table). While both SNPs
were associated with WHRadjBMI in men-only (and no effect in women), the first SNP showed
no effect on gene expression in men but was associated with gene expression in women, and
the second SNP rs6088735 was associated with gene expression in both sexes, but higher in
men and lower in women. The two loci were located at only 519kb from each other (rs6088552
near PIGU, rs6088735 near EDEM2, at chr20:33-34Mb, r2 = 0.07), each showing independent
sex-specific associations with WHRadjBMI and each also showing independent sex-specific asso-
ciation with the expression of two different genes (ACSS2 andMYH7B, respectively) (S13 Fig).
ACSS2 (acyl-CoA synthetase short-chain family member 2) is a cytosolic enzyme, transcribed
by SREB-proteins, that catalyzes the production of acetyl-CoA for use in both lipid synthesis
and energy generation acids [41].MYH7B (myosin, heavy chain 7B, cardiac muscle, beta)
encodes a heavy chain subunit for slow-twitch myosin, largely expressed in heart and skeletal
muscle tissue, and is involved in ATP-hydrolysis.

Age-stratified analysis were not performed for EGCUT as the study participants were rela-
tively young (mean age: 37y), with too few individuals in the>50y age-group. Instead, we
examined association between the 15 age-specific loci and gene expression using data from
3,489 unrelated individuals (N = 2,531 for<50y, N = 958 for�50y) from the NESDA and
NTR cohorts [42, 43]. No SNP showed a significant age-specific effect on gene expression
(FDR(Pagediff)> 5% for all SNP-gene expression combinations).

eQTLs in mice. We compared expression of genes harboured by the identified loci in
inguinal and gonadal fat in age-matched male, female or ovariectomized female (OVX) C57/
BL6 mice maintained on a high-fat (HF) diet [44].

For genes located in the 15 age-specific BMI-associated loci, we compared expression in
OVX female mice with the expression in the other male and female mice, but no differences in
gene expression were observed.

For genes located in the 44 sex-specific WHRadjBMI-associated loci, we compared expression
in female mice (OVX and non-OVX) with the expression in male mice. The expression of two
genes reached significance (P< 6.4x10-4 = 0.05/(39 x 2)), corrected for testing 39 genes with
homologous regions, and two tissues). The expression of IQGAP2, which regulates cell adhe-
sion and motility, (rs2069664) was higher (P = 2.3x10-7) in gonadal fat tissue of male compared
to female mice, whereas the expression of TP53INP2, a co-factor for the thyroid hormone
receptor, (rs6088552) was higher (P = 2.3x10-6) in inguinal fat tissue of male compared to
female mice. TP53INP2 is located in the same chromosomal region for which we found evi-
dence for sex-specific associations with the expression of ACSS2 andMYH7B in humans. Inter-
estingly, Tp53inp2 has also been named the DOR (Diabetes and Obesity Related) gene, as its
expression is substantially reduced in skeletal muscle of obese diabetic fa/fa Zucker rats [45].
Muscle-specific overexpression of Tp53inp2 in mice leads to reduced muscle mass, whereas a
deletion leads to muscle hypertrophy [46]. TP53INP2 expression was markedly reduced in
muscle from individuals with type 2 diabetes and in rodent diabetes models [46].
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Pathway analyses
We applied pathway analyses to gain insight into mechanisms that might be involved in the
age- and sex-specific difference in body size and body shape. We assumed that loci even with
moderate evidence for age- or sex-difference for BMI andWHRadjBMI, respectively, are
enriched for genes that contribute to the age-specific BMI association or sex-specific
WHRadjBMI association (Methods). We used the DEPICT software to perform gene set enrich-
ment and gene expression analyses [47] (S20 and S21 Tables and S1 Text), and QIAGEN’s
Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity) tool
for pathway analysis and functional annotation (S22–S26 Tables and S1 Text). Both the
DEPICT and the IPA analyses identify the possible influence of sex-specific WHRadjBMI loci in
androgen biosynthesis, a hormone known to decrease the storage of lipids in adipose tissue
[48]. Additionally, PPARα/RXRα activation, the most significant canonical pathway for loci
with a greater effect on WHRadjBMI in women, may be inhibited in the presence of estrogen,
thus decreasing the breakdown of lipids through competitive receptor binding [49]. To fully
understand the possible age- and sex- specific regulatory effects these identified genes may
have in the identified pathways, gene sets, and biological functions, further analyses are
needed.

Heritability and explained variance analyses
To assess whether the age-group differences observed for BMI and the sex-differences observed
for WHRadjBMI extend to the contribution of all 2.5M variants (narrow-sense heritability), we
calculated heritability using the GCTA method [50] in several large studies (N = up to 29,232
individuals) for all, for women and men, for the younger and older adult groups. The variance
explained by the 2.5M variants was 21% for BMI and 10% for WHRadjBMI, with no significant
difference between age groups for BMI (Pagediff = 0.19) or between men and women for
WHRadjBMI (Psexdiff = 0.48) (S27 Table).

To further investigate differences between subgroups, we calculated the variance explained
in the discovery data set for subsets of SNPs based on varying thresholds of overall association
on BMI or WHRadjBMI (S14 Fig). When we included only SNPs that reached genome-wide sig-
nificance for BMI (POverall < 5x10-8), the variance explained in the younger adults (3.4%) was
significantly larger than in the older (2.45%) adults. As we increased the significance threshold
and included more SNPs with less significant overall association, the difference between the
two age groups reduced and became non-significant once SNPs with a POverall > 3x10-5 were
included. We observed similar significant differences in explained variance for WHRadjBMI

between men and women, with the most pronounced difference for genome-wide significant
SNPs (POverall < 5x10-8, women 1.60%; men: 0.70%) that reduced and became non-significant
for SNPs with a POverall > 1x10-5. Consistent with the observed interactions, we found no dif-
ference in explained variance between men and women for BMI or between the younger and
the older group for WHRadjBMI at any POverall cut-off (S14 Fig).

Family-based heritability estimates, from the Family Heart Study (N = 1,810, 454 families),
showed similar (but non-significant) trends for younger versus older adults for BMI (60% vs
45%, Pagediff = 0.24), for women and men for WHRadjBMI (43% vs 38%, Psexdiff = 0.68) (S27
Table).

Collectively, these observations are consistent with the results of our genome-wide search,
showing that genetic variants contribute more to BMI variation in younger than in older adults
and more to WHRadjBMI variation in women than in men. These differences are most pro-
nounced when we test genome-wide significant SNPs only, while differences are minimized as
more SNPs with weaker associations are included.
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Joint testing of main- and interaction effects yield novel loci for BMI and
WHRadjBMI

Our stratified analysis approach also offered an opportunity for discovery of novel variants
influencing BMI and WHRadjBMI by (i) using a joint 4df test of the main SNP effect in the pres-
ence of interaction [27] and (ii) by overall meta-analysis of the 4 strata. Both approaches
increase statistical power to detect a main effect if there is evidence of heterogeneity across the
strata. Of the 164 loci that reached genome-wide significance for BMI (P< 5x10-8), 73 are
novel (S28 Table and S1, S2 and S15 Figs). Of the 73 loci, 45 were only identified in the overall
test and 26 were identified in both tests. The remaining two loci were only identified in the
joint test and either displayed evidence for difference between men and women (near CXXC5,
Psexdiff = 2.7x10-5) or between age-groups (near DDC, Pagediff = 6.2x10-4) suggesting that its
identification may have been aided by allowing for interaction. We identified 53 loci with sig-
nificant associations with WHRadjBMI, of which 10 were novel (S29 Table and S1, S2 and S16
Figs). It can be speculated that the yield of novel SNP associations for BMI was greater than
that of WHRadjBMI, because age-dependent effects have not been sought systematically before,
whereas sex-specific screens have been performed previously [10].

Discussion
Our genome-wide search for age- and sex-specific loci in up to 320,485 adults of European
ancestry identified 15 loci that were associated with BMI in an age-dependent manner, with
predominantly larger effects in the younger than in the older adults. Notably, despite sufficient
statistical power, we did not identify BMI-associated loci with sex-dependent effects. The larg-
est association study on BMI [19] identified two SNPs with different impact on BMI in men
and women: rs543874 (SEC16B) and rs6091540 (ZFP64). While these SNPs show more modest
trends towards sex-different effect (Psexdiff = 2.4x10-4 and 1.3x10-4, respectively) in our study,
they were not picked up by our analysis due to the different pre-filtering strategy. In contrast to
BMI and consistent with previous observations for WHRadjBMI, we identified 44 WHRadjBMI

associated loci with sex-specific effects of which the majority have a larger effect in women
compared with men. No age-specific WHRadjBMI loci were discovered.

Our work is the first large-scale genome-wide association study to interrogate the influence
of both age and sex, simultaneously, on genetic effects for BMI and WHRadjBMI. While our
meta-analysis had sufficient power to identify SNP-by-age or SNP-by-sex interactions, we only
discovered loci influenced by age for BMI. Studies that followed up on previously established
BMI loci in longitudinal and cross-sectional designs support our findings regarding the age-
dependency of the majority of these loci [38, 51–57]. Indeed, for 11 of the 15 loci identified in
our study, the effect on BMI was 1.5 to 3.5 times smaller in the older adults than in the younger
adults, which may reflect a greater culmination of environmental and lifestyle factors on adi-
posity in older adults that overwhelm the genetic effects. While none of these loci were associ-
ated with birth weight, all—but one—were nominally associated with increased risk of
childhood obesity. Results from a GWAS on BMI in 16-to-25 year-olds [58] provide prelimi-
nary evidence that some loci exert their largest effects relatively early in life, whereas others
become more pronounced in young adulthood. Notwithstanding the predominance of BMI
loci with larger genetic effects in younger individuals we identified four loci with stronger
genetic effects in older adults. Interestingly, these four loci have been previously associated
with either type 2 diabetes [32] or coronary artery disease [59]. Sensitivity analyses precluded
potential ascertainment bias introduced by disease studies in the older group. These loci may
influence BMI through mechanisms that are distinct from other BMI-associated loci; mecha-
nisms that may be more closely related to processes more directly involved in the pathogenesis
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obesity-related diseases. Furthermore, the directional consistent genetic effects of our loci on
weight change during adult life from longitudinal studies supports our finding.

Indeed, the stratification into age-groups may introduce a cohort effect that implies a differ-
ent genetic or environmental make-up of cohorts with older vs younger adults. For example,
the obesogenic environment that has fueled the obesity epidemic that westernized societies
have experienced during the past 30 years may have affected older individuals differently than
younger individuals. To examine the contribution of such cohort effects and to obtain more
accurate age-dependent effect estimates, large-scale genetic longitudinal studies would be
required that measure BMI at multiple time points with individuals born across a wide range
of birth years.

While our study provides some first insights into age-dependent genetic effects, in particular
before and after menopause, more data from larger studies with longitudinal data spanning
from childhood through late adulthood are desirable to accurately assess the influence of these
loci on BMI across the life course. Indeed, identifying the time of life when variants affect body
weight the most may help us determine the mechanisms of their influence on body weight and
potential for intervention.

In contrast to the observations for BMI, our genome-wide interaction analyses did not iden-
tify loci with age-dependent effects for WHRadjBMI but there was strong novel evidence for sex-
influenced effects in 44 loci. For 27 of the 44 loci, the sexual dimorphism is reported for the
first time, with 17 being completely novel associations for WHRadjBMI. Due to increased sample
size and optimized SNP selection approaches, we more than doubled the number of loci with
established sex-difference for WHRadjBMI [10, 18, 29]. The 44 loci divide into 11 loci with
opposite effects between men and women, 28 loci with a stronger effect in women and five loci
with a stronger effect in men. This is the first report to highlight loci with opposite effects and
the enrichment of women-specific WHRadjBMI associations is consistent with previous
findings.

We examined whether the sex-dependent effects on WHRadjBMI were mediated through
sex-specific effects on the expression of genes located within these loci, using data available
from eQTL analyses in humans and mice. Of particular interest is a region at chromosome
20q11.22 in which two independent WHRadjBMI lead SNPs near PIGU and near EDEM2
showed independent sex-specific associations with the expression of ACSS2 andMYH7B,
respectively, in humans. While we found no direct evidence of sex-specific action of ACSS2 or
MYH7B, based on current knowledge, both proteins seem to be involved in peripheral energy
metabolism. In addition, we observed that the expression of Tp53inp2 (Tumor Protein 53
Inducible Nuclear Protein 2), of which the human TP53INP2 ortholog is also located in the
PIGU locus, had significantly higher expression levels in the inguinal fat of male than female
mice. This observation is consistent with a previous study, showing that Tp53inp2 expression
in white adipose tissue is significantly higher in male than in female mice [60]. The authors
speculated that this sex-specificity might be due to differences is fat distribution with females
storing proportionally more fat in subcutaneous/inguinal and males more in intra-abdominal
depots [60]. Taken together, the sex-specific association with WHRadjBMI of two independent
loci at chr20q11.22 may be mediated through any or all three genes for which we found sex-
specific expression. While all three genes are good candidates, experimental follow up will be
needed to pinpoint the causal gene(s) and to elucidate the function and sex-specificity.

Our broad-sense (family-based analyses) or narrow-sense (GCTA including all 2.5M vari-
ants) heritability estimates showed no difference in explained variance between men or
women, or between younger and older adults for either outcome. However, when considering
subsets of variants displaying overall significant associations (POverall < 1x10-5), we observed a
significant difference between age- but not sex- groups for BMI, with a larger explained
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variance among the younger than the older adults, and between sex- but not age groups for
WHRadjBMI, with a larger explained variance in women than in men. These observations fur-
ther corroborate the predominance of age-dependent loci for BMI and sex-dependent loci for
WHRadjBMI identified through a genome-wide screen.

Even though our study is likely the largest GxE and the first GxE1xE2 interaction GWAS
meta-analysis ever conducted, we did not detect loci with sex-specific effects for BMI (SNP x
SEX), age-specific effects for WHRadjBMI (SNP x AGE) or three-way interactions effects (SNP x
AGE x SEX). Three-way interactions are biologically plausible when considering that sex-spe-
cific effects might be exerted through hormones and that the hormonal status particularly of
women changes at menopause (i.e., around the age of 50 years). This would result in a 1-stra-
tum interaction (i.e., genetic effect only present in younger women) or a 3-strata interaction
(i.e., genetic effect present in all but in younger women). While our study had sufficient power
(power> 80%) to identify any kind of two-way interaction (SNP x SEX or SNP x AGE) even
for effects as small as those observed for established BMI or WHRadjBMI loci, our power was
limited specifically for the biologically plausible three-way effects (1-stratum or 3-strata-inter-
action). To detect subtle effects appearing in only one of the four strata will require specialized
study designs or alternative approaches. We provide a detailed analytical perspective on the
power to detect different interaction signals that may inform other studies aiming at detecting
interaction effects.

We acknowledge that our power estimations are expressed as a function of previously
observed explained variances, incorporating measurement error. As measurement error
increases, the variance of the phenotype increases and—because the genetic effect is not
affected—the explained variance of the genetic variants decreases. While a random measure-
ment error in the dependent variable of a linear regression model would not lead to a biased
effect size estimate, such an error would increase the standard errors of the effect size estimates
compared to a measurement error free outcome. Under the alternative hypothesis, this results
in smaller statistical power. This would imply, for our analysis, that we have potentially missed
some true associations, which could have been detected with smaller measurement error.

With the growing sample-size and thus statistical power, measurement error is often larger
than the variant-wise effect size estimate for many human traits currently under investigation
in large-scale GWAS. Thus, an individual variant’s effect may not have clinical significance by
itself in predictive models. However, its ultimate significance should be evaluated in the context
of the biological mechanism it reveals along with other discovered variants, and the potential
of such a mechanism as a therapeutic target; this is yet to be determined. In order to discover
more disease-associated genetic variants, reducing measurement error by repeated and/or
more accurate measurements is a viable alternative to only increasing sample size–especially
when the measurement error relative to the outcome variability is high.

For technical reasons, variants on the X-chromosome were not screened. Yet, an interesting
hypothesis is that sex-linked variants contribute to a sex-dependent architecture of body size
and shape, both of which exhibit obvious sexual dimorphism. These analytic challenges are
being addressed currently, and exploration of X-linked variation is warranted. Further, we
have included only individuals of European-ancestry and thus cannot report on the generaliz-
ability of our findings to other race or ethnic groups. While we examined age-dependent effects
by binning individuals below and above age 50 years—an average age of menopause—it is pos-
sible that modeling of age as a continuous trait might have had superior power. This approach
poses more complex harmonization issues that should be addressed in a follow-up study. In
addition, we recognize that environmental modifiers may further influence the effect of trait-
related loci, and that some of the interactions we identified may be proxies for interactions
with other environmental factors that are correlated with either age or sex.
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In summary, our findings further distinguish the genetics of BMI from the genetics of
WHRadjBMI. Previously described aspects of distinction include the enrichment of neural path-
ways versus insulin-related pathways and sexual consistency versus sexual dimorphism,
respectively [61, 62]. Our findings suggest that genetic BMI effects can change by age possibly
depicting different mechanisms of genetic BMI effects that either increase or decrease during
adult age. The knowledge of such mechanisms might guide the development of more effective
intervention programs that are desperately sought after.

Methods

Anthropometric phenotypes
The anthropometric traits examined are body mass index (BMI, kg/m²), which is a measure of
body mass and a surrogate for total body fat, and waist-to-hip-ratio adjusted for BMI
(WHRadjBMI), which is a measure of body fat distribution. Traits were transformed before anal-
yses; we first created age- (and BMI) adjusted residuals (including age and age² into the regres-
sion for BMI, and additionally BMI for WHRadjBMI) for each of the four strata separately (men
�50y, men>50y, women�50y, and women>50y) and subsequently applied an inverse nor-
mal transformation.

Study-specific analyses
We included up to 92 studies (totalling up to 21,989 men�50y, 74,324 men>50y, 41,386
women�50y, and 88,625 women>50y) with genome-wide genotyping chip data using either
Affymetrix or Illumina arrays. To enable meta-analyses across different SNP panels, each study
group performed genotype imputation using HapMap II CEU (build 21 or 22) via MACH
[63], IMPUTE [64] or BimBam [65] yielding ~2.8 Million SNPs. In addition, we included 22
studies (up to 28,106, 18,877, 29,306, 17,872 individuals for each of the strata, respectively) for
BMI andWHRadjBMI that were genotyped using the custom iSELECT Metabochip array con-
taining ~195K SNPs designed to support large-scale follow-up of putative associations with
metabolic and cardiovascular traits [66].

In each study, SNP associations were tested separately by age-group and sex (men�50y,
men>50y, women�50y and women>50y) for autosomal variants. The additive genetic effect
for each SNP on each phenotype was estimated via linear regression using MACH2QTL [67],
SNPTEST [64], ProbABEL [68], GenABEL [69], Merlin [70], PLINK [71] or QUICKTEST
[72]. For studies with a case-control design, cases and controls were analysed separately. See
S1, S2 and S3 Tables for study specific genotyping, imputation, analysis, quality control and
phenotypic descriptive information. In total we gathered association data from up to 92 studies
with imputed GWAS data and 22 studies genotyped on the Metabochip array for BMI includ-
ing up to 320,485 individuals and 64 studies with imputed GWAS data and 20 studies geno-
typed on the Metabochip array for WHRadjBMI including up to 216,654 individuals.

All studies were conducted according to the principles expressed in the Declaration of Hel-
sinki. The studies were approved by the local Review Boards and all study participants pro-
vided written informed consent for the collection of samples and subsequent analysis.

Quality control of study-specific aggregated data
All study-specific files were processed in the meta-analysis centers through a standardized
quality-control (QC) pipeline [73]. This involved QC checks on file completeness, range of test
statistics, allele frequencies, trait transformation and population stratification as well as filter-
ing on low quality data. Briefly, we excluded monomorphic SNPs, SNPs with MAF�N� 3
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(minor allele frequency multiplied by sample size), imputed SNPs with poor imputation qual-
ity: r2_hat< 0.3 in MACH, observed/expected dosage variance< 0.3 in BIMBAM,
proper_info< 0.4 in IMPUTE, information< 0.8 in PLINK [64, 65, 67, 71]; genotyped SNPs
with low call-rate (< 95%), and genotyped SNPs that were out of Hardy-Weinberg equilibrium
(HWE, P-Value testing for HWE< 10−5). To increase the overlap in the number of SNPs
between imputed GWAS and MetaboChip data, we transferred all SNP identifiers to unique
SNP names consisting of chromosomal and base position, e.g. using chr1:217820132 instead of
rs2820443 in the meta-analysis. Sex- and age-specific standard errors and P-values from each
participating study were genomic-control (GC) corrected using study- and strata-specific
lambda factors [74], whereas the lambdas were estimated from all genome-wide available SNPs
for imputed GWAS and form a subset of 4,427 QT-interval SNPs for MetaboChip studies.

The meta-analyses
Generally, beta-estimates and standard errors were meta-analyzed using an inverse-variance
weighted fixed effect model as implemented in METAL [75].

We meta-analyzed effect estimates and standard errors from all available studies in each of
the four strata separately, yielding bM�50y, bM>50y, bF�50y, bF>50y and SEM�50y, SEM>50y,
SEF�50y, SEF>50y. By meta-analyzing bM�50y and bM>50y we obtained the effect and standard
error for men (bM,SEM) and women (bF,SEF). Similar meta-analyses yielded the age group-spe-
cific association statistics, b�50y and b>50y with standard errors SE�50y and SE>50y. Meta-analy-
sis of all four strata provided the overall association effect estimate boverall, standard error
SEoverall, and P-value Poverall. A joint meta-analysis based on the pooled stratum-specific esti-
mates was performed according to Aschard et al [27].

After the meta-analyses, we performed an additional quality control step on the meta-ana-
lytic results: We only included SNPs (i) being available in at least half of the maximum sample
size in all strata; and (ii) having chromosome and position annotation in dbSNP.

Genome-wide screening approaches to detect interaction effects
Our study aimed at discovering SNPs with (1) age-different effects, (2) sex-different effects,
and (3) age-dependent sex-different effects or sex-dependent age-different effects.

To find age-different genetic effects, we computed age-difference P-values (Pagediff) by test-
ing for difference between the age group-specific meta-analyzed beta-estimates b�50y and b>50y

using

tage ¼
b�50y � b>50yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
�50y þ SE2

>50y � 2rage � SE�50y � SE>50y

q :

The correlation rage between b�50y and b>50y computed as the Spearman rank correlation
coefficient across all SNPs for BMI andWHRadjBMI was 0.123 and 0.049, respectively. The anal-
ogous test statistic for sex-different effects was

tsex ¼
bM � bFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
M þ SE2

F � 2rsex � SEM � SEF

p ;

with corresponding P-value (Psexdiff). The Spearman correlation rsex was 0.121 or 0.047 for BMI
andWHRadjBMI, respectively.

To test for the three-way interaction of age- and sex-differences, we introduced for the first
time a test of difference between age groups in the sex-difference, which is mathematical equiv-
alent to a test of difference between sexes in the age group-difference using the age-sex-
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difference statistic as

tagesex ¼
ðbM�50y � bF�50yÞ � ðbM>50y � bF>50yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

M�50y þ SE2
F�50y þ SE2

M>50y þ SE2
F>50y

q ;

with the corresponding P-value (Pagesexdiff).
To maximize statistical power we did not split our samples (artificially) into discovery and

replication sets, but meta-analyzed all studies together and verified the absence of cross-study
heterogeneity. We screened genome-wide for Pagediff, Psexdiff, and Pagesexdiff for each of the two
traits (BMI, WHRadjBMI). These screens have ideal power to detect effects that are of opposite
direction across the four strata (S9 Fig). However, searching for effects that are prominent in
one or some strata, but not existent or directionally consistent and less pronounced in other
strata profits from an a priori filter on the overall association (Poverall < 10−5) as shown previ-
ously [10, 26] (Fig 4). The rationale behind this filter is that SNPs with unequal effects in the
different strata have non-zero overall effect when tested in all strata combined. This is true
unless these effects are the same magnitude, but in opposite direction (i.e. cancel out in the
combined analysis). Hence filtering on overall association P-value possibly enriches our selec-
tion with SNPs showing interaction effects. For BMI and WHRadjBMI 7,382 and 2,014 SNPs
passed this filter.

For each trait and for each of the 6 approaches (Pagediff, Psexdiff, Pagesexdiff; with and without a
priori filtering), we controlled the False Discovery Rate (FDR) at 5% to account for the multiple
testing [76]. Importantly, controlling the FDR of each single analysis at 5% implies a global
FDR control at 5% for the ensemble of discoveries resulting from all the different approaches
together.

Sensitivity analyses using population-based studies only
To ensure the association of none of our age- or sex-specific loci were driven by ascertainment
bias through inclusion of case-series of individuals with type 2 diabetes or coronary artery dis-
ease, we performed additional meta-analyses restricted to population-based (i.e. no ascertain-
ment bias) studies and compared the effect-sizes between the original meta-analyses and the
meta-analyses restricted to population-based studies.

Sensitivity analyses excluding studies with self-reported BMI or WHR
Self-reported BMI or WHR may cause systematic measurement error that might lead to biased
effect estimates. Few of our studies assessed BMI and WHR by self-report in the sense that they
told study participants how to measure BMI andWHR for themselves. In order to ensure that
the age- or sex-differences of our identified loci was not driven by the few studies that used
self-report data (13 of our 114 studies), which may introduce bias [77–79], we conducted sensi-
tivity meta-analyses limited to studies that measured anthropometric phenotypes (S5 and S8
Figs).

Power computations
To illustrate the strength and characteristics of the various screens outlined, we analytically
computed power by scan (S9 Fig) and for all scans combined (Figs 4, S10 and S11), for varying
configurations of effect size combinations and directions across the four strata. More specifi-
cally, we assumed equally sized strata, a total sample size approximately corresponding to the
maximum sample size of our study and modelled three categories of SNPs explaining realistic
fractions of the phenotypic variance, i.e. small, medium and large effects from Speliotes et al
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[28] and from Heid et al [29]. The power shown in any of the heatplots was calculated based
on a fixed effect in women�50y (set to the known effect), a fixed effect in men>50y (set to 0),
and varying effects in women>50y and men�50y (varying from negative to positive magni-
tude of the known effect). This strategy allowed us to depict power for most important interac-
tion effects (i.e. for pure sex-difference, pure age-difference, 1-strata interaction and 3-strata
interaction) in a single heatplot (see legend of Fig 4).

Genome-wide screening approaches to detect main effects accounting
for interaction
To identify novel genetic association for BMI andWHRadjBMI, we screened (i) the POverall gath-
ered from a four-way meta-analysis of the stratified results and (ii) the PJoint gathered from a
four-way joint meta-analysis of the stratified results according to Aschard et al [27]. We used a
genome-wide significance level (P<5x10-8) for both approaches to correct for the multiple test-
ing and compared the detected regions to previously established loci using a 500kb distance
criterion.

Establishing enrichment for sex-specific or age-dependent genetic
effects
For WHRadjBMI, we counted among the sex-different associations (disregarding the opposite
effect loci) how many were significantly stronger in men or women. To test whether the
observed counts represent significant imbalances between sexes we compared them to the
expected binomial distribution (with p = 0.5). Similar exercise was done for age-specific associ-
ations for BMI.

Lookup of age- and sex-specific associations with other phenotypes
Age-group specific association results of the identified loci were requested for blood-pressure
measures (diastolic and systolic blood pressure, mean arterial pressure and pulse pressure)
from the Global-BPGen consortium [30]. The provided effect size and standard error estimates
for six age bins (20–29, 30–29, . . ., 70–79 years) were combined to derive SNP x AGE interac-
tion effect sizes and P-Values (S6 Table) using meta-regression [34].

Sex-specific associations of the identified loci were requested for lipid traits (HDL-C,
LDL-C, Total Cholesterol and Triglycerides) from the Global Lipids Genetics Consortium [31],
for type 2 diabetes (T2D) from the DIAGRAM consortium[32], for glycemic traits (fasting
insulin, fasting glucose, HOMA-B, HOMA-IR) from the Meta-Analyses of Glucose and Insu-
lin-related traits (MAGIC) Consortium[33](personal communication), and for blood-pressure
measures (diastolic and systolic blood pressure) from the Global-BPGen consortium [30] (S7,
S8 and S9 Tables). The provided men- and women-specific estimates were used to derive sex-
difference P-Values.

NHGRI GWAS catalog lookups
To further investigate the identified genetic variants in this study and to gain additional insight
into their functionality and possible pleiotropic effects, we searched for previous SNP-trait
associations nearby our lead SNPs. PLINK was used to find all SNPs within 500 kb of any of
our lead SNPs using 1000 Genomes Project Pilot I genotype data from the CEPH (Utah resi-
dents with ancestry from northern and western Europe) population (CEU) [80, 81]. To identify
previous associations, all SNPs within the specified regions were compared with the NHGRI
(National Human Genome Research Institute) catalog for overlap and distances between the
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two SNPs were obtained using SAS, Version 9.2 [citation info below for SAS and PLINK] [82].
The NHGRI’s (National Human Genome Research Institute) GWAS catalog contains only the
top 30 most significant SNP-trait associations from recent GWAS published results from stud-
ies with at least 100,000 SNPs with resulting P-values of less than P<1x10-5 [82]. For previous
GWAS results not reported in the Catalog when accessed on 10/15/2014, additional SNP-trait
associations were pulled from the literature and compared to our lead SNPs using the same
PLINK output file to obtain distance and r2 values [83–91]. All previous associations within
500 kb and with an r2>0.1 with our lead SNP that reached genome-wide significance in the
previous publication were retained for further interrogation.

Association of age-specific BMI loci with birth weight and childhood
obesity
Summary statistics from a genome-wide association meta-analyses previously performed by
EGG Consortium (www.egg-consortium.org) were used to examine whether the 15 age-spe-
cific BMI loci associate with birth weight and/or childhood obesity risk. Birth weight (BW) had
been transformed to z-scores. Association between each SNP and the birth weight was tested
using linear regression assuming an additive genetic model, with sex and, where available, ges-
tational age as covariables [36]. In the genome-wide association meta-analysis for childhood
obesity risk, cases were defined as having an age- and sex-specific BMI> 95th percentile, and
controls as having an age- and sex-specific BMI< 50th percentile in children of European
ancestry. SNP associations were assessed in a case-control design assuming an additive genetic
model [37].

Comparison of effect sizes for age-dependent BMI loci with younger
individuals aged 16–25 years
We compared the effect sizes for 15 loci with age related differences in BMI for each of the age
strata (�50y and>50y) in men and women combined with the BMI in young adults ages 16–
25 years [58]. Nine out of the 14 studies included in the young adult analysis had overlapping
samples with the current sample, although the BMI measurements utilized were different (i.e.
adolescence/early adulthood versus middle-aged to older adulthood). We used t-tests to com-
pare effect estimates (β) from the younger adults aged 16–25 years (A) to each of our age strata
(�50y or>50y) (B) adjusting for the correlation due to overlapping samples such that:

tdiff ¼
bA � bBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
A þ SE2

B � 2r � SEA � SEB

p ;

where SE = standard error and r = Spearman correlation coefficient between the effect esti-
mates genome-wide. We calculated the Spearman correlation r between our study and GIANT
using the combined stages from both studies. The significance level (P-value) was based on a
two-tailed t-test.

Look-up of age-dependent BMI loci for weight change across adulthood
We also evaluated the 15 BMI loci showing age-dependent results from genome-wide analyses
with weight change across adulthood. Using growth curves generated from multiple measures
of weight in individuals between the ages of 20 and 65 years, weight change trajectories were
calculated by sex using age as both a random and fixed effect. For each of the 15 loci showing
age-differences in BMI, we observationally compared the direction of the effect estimate in the
weight change results with the direction of effect seen between our adults aged 18–50 years and
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adults>50 years. While assuming constant height across adulthood and no cohort effect
between the two age-groups, we hypothesized that for loci where we find a stronger effect for
BMI in the adults ages 18–50 years compared to adults>50 years, the direction of effect esti-
mate in the weight change data would be negative. For the loci where we found a stronger effect
for BMI in the adults>50 years compared to the adults ages 18–50 years we hypothesized that
the direction of effect estimate in the weight change data would be positive.

Expression QTL analyses in human tissue
We examined transcript expression of genes nearby (+/- 1Mb) the 44 identified WHRadjBMI

SNP in lymphoblastoid human cell lines available in 2,360 human samples from the EGCUT
and Groningen cohorts (910 women and 1,450 men) [39, 40]. We computed sex-specific asso-
ciations between each of the 44 variants and all genes in their 1Mb vicinity and tested the men-
and women-specific eQTLs for sex-difference (FDRsexdiff<5% calculated with/without initial
filter on overall expression effect FDRoverall<20%).

We next examined whether the 15 SNPs identified to be age-dependently associated with
BMI impact nearby (+/- 1Mb) transcripts differently in younger (<50y) than in older individu-
als (�50y). As such, we analyzed human whole blood transcription in 3,489 unrelated individ-
uals from NESDA and NTR cohorts [42, 43], which were divided in a�50y group (N = 958)
and a<50y group (N = 2,531). Cis-eQTL analysis for the 15 SNPs was conducted for the two
groups separately and age-group specific eQTLs were compared for age-difference
(FDRagediff<5% calculated with/without initial filter on overall expression effect
FDRoverall<20%).

Expression QTL analyses of adipose tissues in high-fat-diet-induced
obese mice
We performed a microarray analysis on data from an experiment previously published [44].
Briefly, 21 male, 21 female, and 21 ovariectomized (OVX) female C57/BL6 mice were fed from
day 21 for 12 weeks on an high fat diet (45% calories from fat; Research Diets, Inc., New Bruns-
wick, NJ). All mice (male, female, and OVX) were exposed to sham or OVX surgery. Animals
were sacrificed and tissues collected during the first 2h of the beginning of the light cycle after a
12h fast.

GeneChip microarray (Affymetrix, Santa Clara, CA) was performed according to manufac-
turer’s instructions on 7 independent pooled samples (3 mice per pooled sample) per experi-
mental group (male, female, OVX) from gonadal adipose tissue (GWAT) and inguinal adipose
tissue (IWAT) fat pads. AMC Project Report Version 12 (6/27/07) GeneChip Operating Sys-
tem parameters α1 and α2 were set to 0.05 and 0.065, respectively. Normalized expression val-
ues from the Affymetrix identifier were analyzed with the online software server Genesifter
(VizX Labs, Inc., Seattle, WA, USA). For comparisons of microarray data sets, multiple t-tests
were used to identify genes with at least a twofold difference in gene expression (with Benja-
mini and Hochberg correction; P<0.05) and at least an expression level of 100. Genes popu-
lated from the GWAS studies were compared to this list of genes that met the minimum
criteria of expression, fold difference, and p-value. Those identified as being statistically signifi-
cant were further validated by qPCR.

Pathway analyses
DEPICT. We used a recently developed pathway enrichment method, DEPICT [47].

The methodology first selects all lead SNPs below a certain threshold with respect to a target
P-value (available genome-wide). We tested multiple hypotheses corresponding to different
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lead SNP selection scenarios. First, we selected SNPs with Psexdiff <0.001. Second, focusing on
SNPs with concordant effect size direction (CED), but different magnitude we added a mar-
ginal filter to boost power by selecting SNPs with Psexdiff <0.01 and Poverall <0.01. In case of
CED, SNPs with stronger effect in women may fall into separate pathways from SNPs with
stronger effect in men. Hence, we have derived gender-specific sex-difference P-values (Psex-
diff_F, Psexdiff_M). We then looked for women-specific pathway enrichment by selecting SNPs
with Psexdiff_F <0.01 and Poverall <0.01 (given the CED framework). Similarly, we created a sep-
arate list for men-specific SNPs by a filter of Psexdiff_M <0.01 and Poverall <0.01. All above lists
were also created for age-dependent BMI associations by replacing Psexdiff by Pagediff, Psexdiff_F
by Pagediff_younger and Psexdiff_M by Pagediff_older.

For each of the eight SNP lists, leads SNPs were identified. For each lead SNP locus a target
region is defined as the smallest interval containing all SNPs with LD>0.5 with the lead SNP of
the locus. All genes encompassed in the target regions represent the “GWAS genes”, thereby
assuming that either the lead SNP is in LD with a functional coding SNP within a gene or that
the lead SNP marks a cis-acting regulatory region. We then used the following pre-defined
gene sets and pathways: Gene Ontology (GO), Reactome, InWeb protein complexes, Mouse
knock-out phenotypes. Gene sets were re-annotated based on co-expression in a large collec-
tion (80,000) of gene expression compendium from GEO. Then, for each gene-set the pair-
wise similarity between GWAS genes was calculated and compared to that of matching sets of
non-GWAS genes to assess significance of enrichment.

DEPICT also generated a prioritized set of genes at each locus. Briefly, genes within associ-
ated loci that are functionally similar to genes from other associated loci are the more likely
candidates. DEPICT prioritizes genes in three steps: gene scoring, bias adjustment, and false
discovery rate estimation. In the scoring step, the method quantifies the similarity of a given
gene to genes from other associated loci. The bias adjustment step controls confounding factors
that may bias the gene scores, e.g. gene length. In the last step, experiment-wide false discovery
rates are estimated by repeating the scoring and bias adjustment steps 20 times based on top
SNPs from pre-computed null GWAS.

Ingenuity Pathway Analysis (IPA). Significantly associated loci were further explored
using QIAGEN’s Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.
com/ingenuity) to determine if there was an over-arching functional or disease relationship
among these loci and their associated genes using the age and sex specific SNP lists described
above. IPA uses publicly available databases (e.g. NHGRI GWAS Catalog, NCBI databases,
KEGG) and proprietary databases of gene/protein interaction, expression, and function to
identify possible pathways, networks, and overlapping functions of genes. For our analysis,
IPA identified potential genes as those genes with coding regions within 2kb upstream or
0.5kb downstream of our list of input dbSNP ids that can unambiguously be mapped to these
ids. To perform the analyses, only Ingenuity Knowledge Base genes were used, both direct
and indirect relationships that are observed or predicted in mammals (humans, mice, and
rats) are strictly considered. All canonical pathways and functional/disease categories and
annotations that were statistically significant (P < 0.05 using the Fisher’s exact test) are
reported; however, those that meet significance for multiple test correction (Benjamin-Hoch-
berg corrected P <0.05) are highlighted in the table. Only the top ten predicted networks
containing up to 140 genes or endogenous molecules were requested. Only those networks
with a score of greater than 2 (Fisher’s Exact Test result of P<0.01) are considered significant
[92].
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Estimation of heritability
We estimated the broad heritability (H2) of BMI and WHRadjBMI within the Family Heart
Study (FHS) to assess how much of each trait’s total phenotypic variance may be genetic. A
random sample of 1,810 individuals (454 families) was used for this analysis. The sample was
stratified by age and sex into 9 groups (all, all�50y, all>50y, men, women, men�50y, men
>50y, women�50y, women>50y) to assess how each trait’s genetic variance may differ across
strata. Within each group, BMI andWHRadjBMI were adjusted for age, age2, genotyping chips
(Illumina 560K, 1,000,000K, 610K), 10 principal components and 3 study centers. Residuals
for BMI andWHRadjBMI were ranked and an inverse normal transformation was applied. Sub-
sequently, SOLAR was used to estimate the H2 of BMI and WHRadjBMI within each group (S28
Table).

Genome-wide Complex Trait Analysis for proportion of variance
explained
To explore the contribution of all common (genotyped) SNPs genome-wide to each trait of
interest, BMI and WHRadjBMI, we estimated the variance explained by all the autosomal SNPs
in the combined ARIC, KORA S3/S4, CoLaus, EGCUT and SHIP studies within each of the sex
and age strata, using the method proposed by Yang et al [93] and implemented in the
Genome-wide Complex Trait Analysis software package (GCTA http://www.
complextraitgenomics.com/software/gcta/). Each phenotypic trait was transformed in the
same form as was used for all meta-analyses.

Estimation of explained variance
We estimated the age-group and sex-specific polygenic variance explained by various subsets
of SNPs that were based on varying thresholds of overall association (POverall) with BMI or
WHRadjBMI. First, each subset of SNPs was clumped into independent regions using a physical
distance criterion<500kb and for each region the most significantly overall associated SNP
(i.e. top SNP) was taken further. For each top SNP, the explained variance was calculated
according to

r2 ¼ 1

1þ N

F�1 P
2ð Þð Þ2

� 1� r2

N

for each age-group and for each sex separately [94]. Finally, the variance explained by the sub-
set of SNPs was obtained by summing up the single SNP-specific explained variances. The
overall association threshold was varied from 1x10-8 to 0.1.

Search for biological and functional knowledge of the identified
association regions
We examined whether SNPs known to provide reliable tags for Copy-Number-Variations
(CNVs) in subjects of European-descent (combining four catalogues including 60,167 CNV-
tagging SNPs as described previously [95]) correlated with our lead SNPs. We also performed
several online database searches to establish whether known variants within a 500kb-window
on both sides of each lead SNP, that are in high linkage disequilibrium (r²> 0.8) with our lead
SNPs (using SNAP Proxy search [96]), might have putative or predicted function. (i) We
searched the SIFT database [97] to determine whether any of these SNPs were predicted to
affect protein function. (ii) We used Annovar [98] to investigate predicted and putative
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function in several functional classes, including splicing regulation, stop codons, polyphen pre-
dictions. (iii) We used the regulome database (http://regulome.stanford.edu/) to search for
known and predicted regulatory elements (DNAase hypersensitivity, binding sites of transcrip-
tion factors, and promoter regions) in the intergenic regions of our age-specific BMI and sex-
specific WHRadjBMI loci. Additionally, we searched for estrogen, androgen or progesterone
receptor motifs around our sex-specific WHRadjBMI loci. Source of these data include public
datasets from GEO, the ENCODE project, and published literature [99].

Supporting Information
S1 Fig. Workflow and overview of results. The numbers stated are the number of identified
independent loci for the respective analysis. Given in brackets is the number of the identified
loci that are novel loci for the trait, i.e. have not been previously reported for association with
the trait.
(TIF)

S2 Fig. QQ plots for overall association and joint test P-Values for both traits. QQ-plots for
BMI (A) and WHRadjBMI (B) depicting overall association P-Values (red) and joint test P-Val-
ues (blue) for all SNPs and after excluding previously published BMI or WHRadjBMI associated
regions (POverall: magenta; Pjoint: cyan).
(TIF)

S3 Fig. Locuszoom plots for 15 loci associated with BMI that are different between men
and women�50y and men and women>50y. Each plot highlights the most significant
SNP for age-differences and illustrates p-values for age-differences (Pagediff), sex-differences
(Psexdiff), all strata combined (POverall), and the joint test (PJoint). The figure is sorted according
to Table 1. The plots are based on GrCh37 build positions and annotations.
(TIF)

S4 Fig. Scatterplot of effect estimates (beta) for loci showing age-differences in BMI, con-
trasting loci with larger effect estimates in men & women�50 years (light green diamonds)
and loci with larger effects in men & women>50 years (dark green squares).
(TIF)

S5 Fig. Sensitivity meta-analysis for the 15 age-specific BMI loci-excluding 13 studies that
used self-report data for BMI and comparing the age-difference effects to the originally
observed age-difference.
(TIF)

S6 Fig. Locuszoom plots for 44 loci associated with WHRadjBMI that are different between
men and women. Each plot highlights the most significant SNP for sex-differences and illus-
trates p-values for age-differences (Pagediff), sex-differences(Psexdiff), all strata combined (POverall),
and the joint test (PJoint). The figure is sorted according to Table 2. The plots are based on
GrCh37 build positions and annotations.
(TIF)

S7 Fig. Scatterplot of effect estimates (beta) for loci showing sex-differences in waist-to-hip
ratio adjusted for BMI (WHRadjBMI), organized by loci with larger effect estimates in
women compared to men (red circles), larger effect estimates in men compared to women
(blue squares) and opposite effect estimates between men and women (green triangles).
(TIF)
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S8 Fig. Sensitivity meta-analysis for the 44 sex-differential WHRadjBMI loci—excluding two
self-report studies and comparing the sex-difference effects to the originally observed sex-
difference.
(TIF)

S9 Fig. Power by AGE x SEX scan. The figures illustrate the power of scanning Psexdiff (A: unfil-
tered, B: pre-filtered on POverall), Pagediff (C: unfiltered, D: pre-filtered on POverall), and Pagesexdiff
(E: unfiltered, F: pre-filtered on Psexdiff or on Pagediff). We assume four equally sized strata, a total
sample size of N = 300,000 (comparable to the sample size in our BMI analyses). To investigate
varying scenarios of interaction effects, we set (i) bF<50y = 0.033, a median BMI effect near
MAP2K5 from Speliotes et al. (R2 = 0.037%), (ii) bM>50y = 0, and (iii) vary bF>50y and bM<50y on
the x- and y-axes respectively.
(TIF)

S10 Fig. Power of the AGE x SEX approaches for BMI for varying allele frequencies and
varying modelled effect sizes. The figure shows the power to detect age-difference, sex-differ-
ence or age x sex-difference in at least one of our scans and for varying scenarios of effect size
combinations between the 4 strata. We assume four equally sized strata and a total sample size
of N = 300,000 (comparable to the sample size in our BMI analyses). Furthermore, for each
plot we (i) set bF<50y to a known BMI effect sizes from Speliotes et al. paper (using a small
(PTPB2), medium (NEGR1) and the largest (FTO) effect size), (ii) set bM>50y = 0, and (iii) vary
bF>50y and bM<50y on the axes.
(TIF)

S11 Fig. Power of the AGE x SEX approaches for WHRadjBMI for varying allele frequencies
and varying modelled effect sizes. The figure shows the power to detect age-difference, sex-
difference or age x sex-difference in at least one of our scans and for varying scenarios of effect
size combinations between the 4 strata. We assume four equally sized strata and a total sample
size of N = 200,000 (comparable to the sample size in our WHRadjBMI analyses). Furthermore,
for each plot we (i) set bF<50y to a knownWHRadjBMI effect sizes from Heid et al. paper (using
a small (CPEB4), medium (LYPLAL1) and the largest (RSPO3) effect size), (ii) set bM>50y = 0,
and (iii) vary bF>50y and bM<50y on the axes.
(TIF)

S12 Fig. Differences in effect estimates (beta ±SE) between young adults, adults�50y, and
adults>50y for BMI loci selected for age-differences. Loci are ordered according to trends in
absolute magnitude of effect: 1) where the absolute magnitude of effect is largest in adolescent/
youngest adults (ages 16–25y)1, 2) where absolute magnitude is largest in adults (�50y), and 3)
where absolute magnitude is largest in older adults (>50y). BMI: Body mass index; SE: stan-
dard error; Details for men and women ages 16–25 have been described elsewhere (Graff et al.:
“Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into
the effects of genetic loci over the life course.”Human Molecular Genetics 2013).
(TIF)

S13 Fig. The most significant SNPs, rs6088552 and rs6088735, for sex-differences with
WHRadjBMI each identified to be a sex-different cis-eQTL for the ACSS2 andMYH7B genes,
respectively, on chromosome 20.WHRadjBMI: waist-to-hip ratio adjusted for body-mass
index; eQTL: expression quantitative trait loci. Sex-specific associations were computed to
identify cis eQTL signals that were likely to be coincident with the WHRadjBMI using human
eQTL in lymphoblastoid cells.
(TIF)
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S14 Fig. Total stratum-specific explained variance by SNPs meeting varying thresholds of
overall association for BMI (A: sex-specific; B: age-group specific) and for WHRadjBMI (C:
sex-specific; D: age-specific).
(TIF)

S15 Fig. Locuszoom plots for 73 novel loci associated with BMI that were either identified
by the joint 4df test or by the overall (age-group and sex—combined) analysis. Each plot
highlights the most significant SNP for the combined effect (POverall) or for the joint test (PJoint)
and illustrates p-values for age-differences (PAgediff), sex-differences (PSexdiff) and PJoint or
POverall respectively

a. The figure is sorted according to chromosome and position. The plots are
based on GrCh37 build positions and annotations. For three loci we identified two different
SNPs that met the significance threshold for the scan of POverall and PJoint. For each set we plot-
ted the SNP with the lowest P-value based on the scan it was identified for. These loci and the
SNP plotted are as follows: 1) rs7421089 − Selected for PJoint and rs10804189 − Selected for
POverall->rs10804189 is plotted, 2) rs1557765 − Selected for POverall and rs7928810
− Selected for PJoint-> rs7928810 is plotted, and 3) rs11181001− Selected for PJoint &
rs1405552− Selected for POverall-> rs1405552 is plotted.
(TIF)

S16 Fig. Locuszoom plots for 10 novel loci associated with WHRadjBMI that were either
identified by the joint 4df test or by the overall (sex-combined) analysis. Each plot highlights
the most significant SNP for the combined effect (POverall) or for the joint test (PJoint) and illus-
trates p-values for age-differences (PAgediff), sex-differences (PSexdiff) and PJoint or POverall
respectively. The figure is sorted according to chromosome and position. The plots are based
on GrCh37 build positions and annotations.
(TIF)

S1 Table. Study design, number of individuals and sample quality control for genome-wide
association study cohorts.
(XLSX)

S2 Table. Information on genotyping methods, quality control of SNPs, imputation, and
statistical analysis for genome-wide association study cohorts.
(XLSX)

S3 Table. Study-specific descriptive statistics of study cohorts. �� There were significant dif-
ferences in the number of subjects available for different phenotypes. In this case, separate
summary statistics were provided.
(XLSX)

S4 Table. Stratum-specific results and extended details for the 15 age-specific BMI loci. The
table is ordered according to Table 1.
(XLSX)

S5 Table. Stratum-specific results and extended details for the 44 sex-specific WHRadjBMI

loci. The table is ordered according to Table 2.
(XLSX)

S6 Table. Age-specific associations of age-dependent BMI SNPs with blood pressure (BP).
Abbreviations: Effect Allele (EA), Other Allele (OA), SNP-by-age interaction effect (bSNPxAGE),
SNP-by-age interaction effect standard error (SESNPxAGE), SNP-by-age interaction P-value
(PSNPxAGE).
(XLSX)
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