26 research outputs found
Observations of ozone depletion events in a Finnish boreal forest
We investigated the concentrations and vertical profiles of ozone over a 20-year period (1996–2016) at the SMEAR II station in southern Finland. Our results showed that the typical daily median ozone concentrations were in the range of 20–50 ppb with clear diurnal and annual patterns. In general, the profile of ozone concentrations illustrated an increase as a function of heights. The main aim of our study was to address the frequency and strength of ozone depletion events at this boreal forest site. We observed more than a thousand of 10 min periods at 4.2 m, with ozone concentrations below 10 ppb, and a few tens of cases with ozone concentrations below 2 ppb. Among these observations, a number of ozone depletion events that lasted for more than 3 h were identified, and they occurred mainly in autumn and winter months. The low ozone concentrations were likely related to the formation of a low mixing layer under the conditions of low temperatures, low wind speeds, high relative humidities and limited intensity of solar radiation.Peer reviewe
Temperature and volatile organic compound concentrations as controlling factors for chemical composition of alpha-pinene-derived secondary organic aerosol
This work investigates the individual and combined effects of temperature and volatile organic compound precursor concentrations on the chemical composition of particles formed in the dark ozonolysis of alpha-pinene. All experiments were conducted in a 5m(3) Teflon chamber at an initial ozone concentration of 100 ppb and initial alpha-pinene concentrations of 10 and 50 ppb, respectively; at constant temperatures of 20, 0, or -15 degrees C; and at changing temperatures (ramps) from -15 to 20 and from 20 to -15 degrees C. The chemical composition of the particles was probed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A four-factor solution of a positive matrix factorization (PMF) analysis of the combined HR-ToF-AMS data is presented. The PMF analysis and the elemental composition analysis of individual experiments show that secondary organic aerosol particles with the highest oxidation level are formed from the lowest initial alpha-pinene concentration (10 ppb) and at the highest temperature (20 degrees C). A higher initial alpha-pinene concentration (50 ppb) and/or lower temperature (0 or -15 degrees C) results in a lower oxidation level of the molecules contained in the particles. With respect to the carbon oxidation state, particles formed at 0 degrees C are more comparable to particles formed at 15 degrees C than to those formed at 20 degrees C. A remarkable observation is that changes in temperature during particle formation result in only minor changes in the elemental composition of the particles. Thus, the temperature at which aerosol particle formation is induced seems to be a critical parameter for the particle elemental composition. Comparison of the HR-ToF-AMS-derived estimates of the content of organic acids in the particles based on m/z 44 in the mass spectra show good agreement with results from off-line molecular analysis of particle filter samples collected from the same experiments. Higher temperatures are associated with a decrease in the absolute mass concentrations of organic acids (R-COOH) and organic acid functionalities (-COOH), while the organic acid functionalities account for an increasing fraction of the measured particle mass.Peer reviewe
Size-dependent influence of NO_x on the growth rates of organic aerosol particles
Atmospheric new-particle formation (NPF) affects climate by contributing to a large fraction of the cloud condensation nuclei (CCN). Highly oxygenated organic molecules (HOMs) drive the early particle growth and therefore substantially influence the survival of newly formed particles to CCN. Nitrogen oxide (NO_x) is known to suppress the NPF driven by HOMs, but the underlying mechanism remains largely unclear. Here, we examine the response of particle growth to the changes of HOM formation caused by NO_x. We show that NO_x suppresses particle growth in general, but the suppression is rather nonuniform and size dependent, which can be quantitatively explained by the shifted HOM volatility after adding NO_x. By illustrating how NO_x affects the early growth of new particles, a critical step of CCN formation, our results help provide a refined assessment of the potential climatic effects caused by the diverse changes of NO_x level in forest regions around the globe
Role of sesquiterpenes in biogenic new particle formation
Biogenic vapors form new particles in the atmosphere, affecting global climate. The contributions of monoterpenes and isoprene to new particle formation (NPF) have been extensively studied. However, sesquiterpenes have received little attention despite a potentially important role due to their high molecular weight. Via chamber experiments performed under atmospheric conditions, we report biogenic NPF resulting from the oxidation of pure mixtures of β-caryophyllene, α-pinene, and isoprene, which produces oxygenated compounds over a wide range of volatilities. We find that a class of vapors termed ultralow-volatility organic compounds (ULVOCs) are highly efficient nucleators and quantitatively determine NPF efficiency. When compared with a mixture of isoprene and monoterpene alone, adding only 2% sesquiterpene increases the ULVOC yield and doubles the formation rate. Thus, sesquiterpene emissions need to be included in assessments of global aerosol concentrations in pristine climates where biogenic NPF is expected to be a major source of cloud condensation nuclei
The role of ions in new particle formation in the CLOUD chamber
The formation of secondary particles in the atmosphere accounts for more than half of global cloud condensation nuclei. Experiments at the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber have underlined the importance of ions for new particle formation, but quantifying their effect in the atmosphere remains challenging. By
using a novel instrument setup consisting of two nanoparticle counters, one of them equipped with an ion filter, we were able to further investigate the ion-related mechanisms of new particle formation. In autumn 2015, we carried out experiments at CLOUD on four systems of different chemical compositions involving monoterpenes, sulfuric acid, nitrogen
oxides, and ammonia. We measured the influence of ions on the nucleation rates under precisely controlled and atmospherically relevant conditions. Our results indicate that ions enhance the nucleation process when the charge is necessary to stabilize newly formed clusters, i.e., in conditions in which neutral clusters are unstable. For charged clusters
that were formed by ion-induced nucleation, we were able to measure, for the first time, their progressive neutralization due to recombination with oppositely charged ions. A large fraction of the clusters carried a charge at 1.5 nm diameter. However, depending on particle growth rates and ion concentrations, charged clusters were largely neutralized by ion–ion
recombination before they grew to 2.5 nm. At this size, more than 90 % of particles were neutral. In other words, particles may originate from ion-induced nucleation, although they are neutral upon detection at diameters larger than 2.5 nm. Observations at Hyytiälä, Finland, showed lower ion concentrations and a lower contribution of ion-induced nucleation than
measured at CLOUD under similar conditions. Although this can be partly explained by the observation that ion-induced fractions decrease towards lower ion concentrations, further investigations are needed to resolve the origin of the discrepancy
Overview of the MOSAiC expedition—Atmosphere
With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic
Microwave promoted C-O coupling for synthesizing O-aryloxytriazole nucleoside analogues
International audienc