104 research outputs found
p, He, and C to Fe cosmic-ray primary fluxes in diffusion models: Source and transport signatures on fluxes and ratios
The propagated fluxes of proton, helium, and heavier primary cosmic-ray
species (up to Fe) are a means to indirectly access the source spectrum of
cosmic rays. We check the compatibility of the primary fluxes with the
transport parameters derived from the B/C analysis, but also if they bring
further constraints. Proton data are well described in the simplest model
defined by a power-law source spectrum and plain diffusion. They can also be
accommodated by models with, e.g., convection and/or reacceleration. There is
no need for breaks in the source spectral indices below TeV/n. Fits on
the primary fluxes alone do not provide physical constraints on the transport
parameters. If we let free the source spectrum and fix the diffusion coefficient such as to reproduce the B/C ratio, the MCMC analysis constrains
the source spectral index to be in the range for all primary
species up to Fe, regardless of the value of the diffusion slope . The
low-energy shape of the source spectrum is degenerate with the
low-energy shape of the diffusion coefficient: we find
for p and He data, but for C
to Fe primary species. This is consistent with the toy-model calculation in
which the shape of the p/He and C/O to Fe/O data is reproduced if
(no need for different slopes ). When
plotted as a function of the kinetic energy per nucleon, the low-energy p/He
ratio is shaped mostly by the modulation effect, whereas primary/O ratios are
mostly shaped by their destruction rate.Comment: 18 pages, 14 figures: accepted in A&A (1 table added
Pippi - painless parsing, post-processing and plotting of posterior and likelihood samples
Interpreting samples from likelihood or posterior probability density
functions is rarely as straightforward as it seems it should be. Producing
publication-quality graphics of these distributions is often similarly painful.
In this short note I describe pippi, a simple, publicly-available package for
parsing and post-processing such samples, as well as generating high-quality
PDF graphics of the results. Pippi is easily and extensively configurable and
customisable, both in its options for parsing and post-processing samples, and
in the visual aspects of the figures it produces. I illustrate some of these
using an existing supersymmetric global fit, performed in the context of a
gamma-ray search for dark matter. Pippi can be downloaded and followed at
http://github.com/patscott/pippi .Comment: 4 pages, 1 figure. v3: Updated for pippi 2.0. New features include
hdf5 support, out-of-core processing, inline post-processing with arbitrary
Python code in the input file, and observable-specific data cuts. Pippi can
be downloaded from http://github.com/patscott/pipp
Cosmic-ray antiproton constraints on light dark matter candidates
Some direct detection experiments have recently collected excess events that
could be interpreted as a dark matter (DM) signal, pointing to particles in the
10 GeV mass range. We show that scenarios in which DM can self-annihilate
with significant couplings to quarks are likely excluded by the cosmic-ray (CR)
antiproton data, provided the annihilation is S-wave dominated when DM
decouples in the early universe. These limits apply to most of supersymmetric
candidates, eg in the minimal supersymmetric standard model (MSSM) and in the
next-to-MSSM (NMSSM), and more generally to any thermal DM particle with
hadronizing annihilation final states.Comment: Contribution to the proceedings of TAUP-2011 (Munich, 5-9 IX 2011). 4
page
I-care-an interaction system for the individual activation of people with dementia
I-CARE is a hand-held activation system that allows professional and informal caregivers to cognitively and socially activate people with dementia in joint activation sessions without special training or expertise. I-CARE consists of an easy-to-use tablet application that presents activation content and a server-based backend system that securely manages the contents and events of activation sessions. It tracks various sources of explicit and implicit feedback from user interactions and different sensors to estimate which content is successful in activating individual users. Over the course of use, I-CARE’s recommendation system learns about the individual needs and resources of its users and automatically personalizes the activation content. In addition, information about past sessions can be retrieved such that activations seamlessly build on previous sessions while eligible stakeholders are informed about the current state of care and daily form of their protegees. In addition, caregivers can connect with supervisors and professionals through the I-CARE remote calling feature, to get activation sessions tracked in real time via audio and video support. In this way, I-CARE provides technical support for a decentralized and spontaneous formation of ad hoc activation groups and fosters tight engagement of the social network and caring community. By these means, I-CARE promotes new care infrastructures in the community and the neighborhood as well as relieves professional and informal caregivers
Hybrid fNIRS-EEG based classification of auditory and visual perception processes
For multimodal Human-Computer Interaction (HCI), it is very useful to identify the modalities on which the user is currently processing information. This would enable a system to select complementary output modalities to reduce the user\u27s workload. In this paper, we develop a hybrid Brain-Computer Interface (BCI) which uses Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS) to discriminate and detect visual and auditory stimulus processing. We describe the experimental setup we used for collection of our data corpus with 12 subjects. On this data, we performed cross-validation evaluation, of which we report accuracy for different classification conditions. The results show that the subject-dependent systems achieved a classification accuracy of 97.8% for discriminating visual and auditory perception processes from each other and a classification accuracy of up to 94.8% for detecting modality-specific processes independently of other cognitive activity. The same classification conditions could also be discriminated in a subject-independent fashion with accuracy of up to 94.6 and 86.7%, respectively. We also look at the contributions of the two signal types and show that the fusion of classifiers using different features significantly increases accuracy
Status of cosmic-ray antideuteron searches
The precise measurement of cosmic-ray antiparticles serves as important means
for identifying the nature of dark matter. Recent years showed that identifying
the nature of dark matter with cosmic-ray positrons and higher energy
antiprotons is difficult, and has lead to a significantly increased interest in
cosmic-ray antideuteron searches. Antideuterons may also be generated in dark
matter annihilations or decays, offering a potential breakthrough in unexplored
phase space for dark matter. Low-energy antideuterons are an important approach
because the flux from dark matter interactions exceeds the background flux by
more than two orders of magnitude in the low-energy range for a wide variety of
models. This review is based on the "dbar14 - dedicated cosmic-ray antideuteron
workshop", which brought together theorists and experimentalists in the field
to discuss the current status, perspectives, and challenges for cosmic-ray
antideuteron searches and discusses the motivation for antideuteron searches,
the theoretical and experimental uncertainties of antideuteron production and
propagation in our Galaxy, as well as give an experimental cosmic-ray
antideuteron search status update. This report is a condensed summary of the
article "Review of the theoretical and experimental status of dark matter
identification with cosmic-ray antideuteron" (arXiv:1505.07785).Comment: 9 pages, 4 figures, ICRC 2015 proceeding
Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays
A proximity focusing Cherenkov imager called CHERCAM, has been built for the
charge measurement of nuclear cosmic rays with the CREAM instrument. It
consists of a silica aerogel radiator plane across from a detector plane
equipped with 1,600 1" diameter photomultipliers. The two planes are separated
by a ring expansion gap. The Cherenkov light yield is proportional to the
charge squared of the incident particle. The expected relative light collection
accuracy is in the few percents range. It leads to an expected single element
separation over the range of nuclear charge Z of main interest 1 < Z < 26.
CHERCAM is designed to fly with the CREAM balloon experiment. The design of the
instrument and the implemented technical solutions allowing its safe operation
in high altitude conditions (radiations, low pressure, cold) are presented.Comment: 24 pages, 19 figure
The AMS-RICH velocity and charge reconstruction
The AMS detector, to be installed on the International Space Station,
includes a Ring Imaging Cerenkov detector with two different radiators, silica
aerogel (n=1.05) and sodium fluoride (n=1.334). This detector is designed to
provide very precise measurements of velocity and electric charge in a wide
range of cosmic nuclei energies and atomic numbers. The detector geometry, in
particular the presence of a reflector for acceptance purposes, leads to
complex Cerenkov patterns detected in a pixelized photomultiplier matrix. The
results of different reconstruction methods applied to test beam data as well
as to simulated samples are presented. To ensure nominal performances
throughout the flight, several detector parameters have to be carefully
monitored. The algorithms developed to fulfill these requirements are
presented. The velocity and charge measurements provided by the RICH detector
endow the AMS spectrometer with precise particle identification capabilities in
a wide energy range. The expected performances on light isotope separation are
discussed.Comment: Contribution to the ICRC07, Merida, Mexico (2007); Presenter: F.
Bara
The RICH detector of the AMS-02 experiment: status and physics prospects
The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be
installed on the International Space Station (ISS) for at least 3 years, is a
detector designed to measure charged cosmic ray spectra with energies up to the
TeV region and with high energy photon detection capability up to a few hundred
GeV. It is equipped with several subsystems, one of which is a proximity
focusing RICH detector with a dual radiator (aerogel+NaF) that provides
reliable measurements for particle velocity and charge. The assembly and
testing of the AMS RICH is currently being finished and the full AMS detector
is expected to be ready by the end of 2008. The RICH detector of AMS-02 is
presented. Physics prospects are briefly discussed.Comment: 5 pages. Contribution to the 10th ICATPP Conference on Astroparticle,
Particle, Space Physics, Detectors and Medical Physics Applications (Como
2007). Presenter: Rui Pereir
- …