143 research outputs found

    Results of trials to evaluate the interim allowance strategy for West Greenland humpback whales

    Get PDF
    The framework developed during the 2015 Annual Meeting of the Scientific Committee to evaluate an ‘interim allowance’ strategy is applied to West Greenland humpback whales based on the agreed Strike Limit Algorithm for these whales. The values for the ‘mandatory’ performance statistics for the ‘phase-out’ and ‘interim allowance’ strategy suggest that adopting the ‘interim allowance’ strategy has no substantial impact on risk, but leads to a better ability satisfy need and to lower interannual variation in strike limits

    Oceans of plenty? Challenges, advancements, and future directions for the provision of evidence-based fisheries management advice

    Get PDF
    Marine population modeling, which underpins the scientific advice to support fisheries interventions, is an active research field with recent advancements to address modern challenges (e.g., climate change) and enduring issues (e.g., data limitations). Based on discussions during the ‘Land of Plenty’ session at the 2021 World Fisheries Congress, we synthesize current challenges, recent advances, and interdisciplinary developments in biological fisheries models (i.e., data-limited, stock assessment, spatial, ecosystem, and climate), management strategy evaluation, and the scientific advice that bridges the science-policy interface. Our review demonstrates that proliferation of interdisciplinary research teams and enhanced data collection protocols have enabled increased integration of spatiotemporal, ecosystem, and socioeconomic dimensions in many fisheries models. However, not all management systems have the resources to implement model-based advice, while protocols for sharing confidential data are lacking and impeding research advances. We recommend that management and modeling frameworks continue to adopt participatory co-management approaches that emphasize wider inclusion of local knowledge and stakeholder input to fill knowledge gaps and promote information sharing. Moreover, fisheries management, by which we mean the end-to-end process of data collection, scientific analysis, and implementation of evidence-informed management actions, must integrate improved communication, engagement, and capacity building, while incorporating feedback loops at each stage. Increasing application of management strategy evaluation is viewed as a critical unifying component, which will bridge fisheries modeling disciplines, aid management decision-making, and better incorporate the array of stakeholders, thereby leading to a more proactive, pragmatic, transparent, and inclusive management framework–ensuring better informed decisions in an uncertain world

    Evolution of age and length at maturation of Alaskan salmon under size-selective harvest

    Get PDF
    -Spatial and temporal trends and variation in life-history traits, including age and length at maturation, can be influenced by environmental and anthropogenic processes, including size-selective exploitation. Spawning adults in many wild Alaskan sockeye salmon populations have become shorter at a given age over the past half-century, but their age composition has not changed. These fish have been exploited by a gillnet fishery since the late 1800s that has tended to remove the larger fish. Using a rare, long-term dataset, we estimated probabilistic maturation reaction norms (PMRNs) for males and females in nine populations in two basins and correlated these changes with fishery size selection and intensity to determine whether such selection contributed to microevolutionary changes in maturation length. PMRN midpoints decreased in six of nine populations for both sexes, consistent with the harvest. These results support the hypothesis that environmental changes in the ocean (likely from competition) combined with adaptive microevolution (decreased PMRNs) have produced the observed life-history patterns. PMRNs did not decrease in all populations, and we documented differences in magnitude and consistency of size selection and exploitation rates among populations. Incorporating evolutionary considerations and tracking further changes in life-history traits can support continued sustainable exploitation and productivity in these and other exploited natural resources

    Towards the selection of a final set of trials for the 2012 ENP gray whale implementation review

    Get PDF
    At the March 2012 Intersessional meeting of the AWMP Working Group in La Jolla,CA, a set of trials was agreed upon for consideration as part of the Eastern Pacific Gray Whale Implementation Review. Since then, progress has been made on conditioning that set of trials. An assessment of the preliminary conditioning results is presented here, with a focus on five trials that were not able to mimic the available data as well as the remaining trials. If any of these five trials is to be dropped from further consideration, there must be unanimous agreement within the Working Group for such

    Lessons to be learned by comparing integrated fisheries stock assessment models (SAMs) with integrated population models (IPMs)

    Get PDF
    AEP was partially funded by the Cooperative Institute for Climate, Ocean, & Ecosystem Studies (CICOES) under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2023-1331.Integrated fisheries stock assessment models (SAMs) and integrated population models (IPMs) are used in biological and ecological systems to estimate abundance and demographic rates. The approaches are fundamentally very similar, but historically have been considered as separate endeavors, resulting in a loss of shared vision, practice and progress. We review the two approaches to identify similarities and differences, with a view to identifying key lessons that would benefit more generally the overarching topic of population ecology. We present a case study for each of SAM (snapper from the west coast of New Zealand) and IPM (woodchat shrikes from Germany) to highlight differences and similarities. The key differences between SAMs and IPMs appear to be the objectives and parameter estimates required to meet these objectives, the size and spatial scale of the populations, and the differing availability of various types of data. In addition, up to now, typical SAMs have been applied in aquatic habitats, while most IPMs stem from terrestrial habitats. SAMs generally aim to assess the level of sustainable exploitation of fish populations, so absolute abundance or biomass must be estimated, although some estimate only relative trends. Relative abundance is often sufficient to understand population dynamics and inform conservation actions, which is the main objective of IPMs. IPMs are often applied to small populations of conservation concern, where demographic uncertainty can be important, which is more conveniently implemented using Bayesian approaches. IPMs are typically applied at small to moderate spatial scales (1 to 104 km2), with the possibility of collecting detailed longitudinal individual data, whereas SAMs are typically applied to large, economically valuable fish stocks at very large spatial scales (104 to 106 km2) with limited possibility of collecting detailed individual data. There is a sense in which a SAM is more data- (or information-) hungry than an IPM because of its goal to estimate absolute biomass or abundance, and data at the individual level to inform demographic rates are more difficult to obtain in the (often marine) systems where most SAMs are applied. SAMs therefore require more 'tuning' or assumptions than IPMs, where the 'data speak for themselves', and consequently techniques such as data weighting and model evaluation are more nuanced for SAMs than for IPMs. SAMs would benefit from being fit to more disaggregated data to quantify spatial and individual variation and allow richer inference on demographic processes. IPMs would benefit from more attempts to estimate absolute abundance, for example by using unconditional models for capture-recapture data.Publisher PDFPeer reviewe

    Can diagnostic tests help identify model misspecification in integrated stock assessments?

    Get PDF
    AbstractA variety of data types can be included in contemporary integrated stock assessments to simultaneously provide information on all estimated parameters. Conflicts between data, which are often a symptom of model misspecification and evident as model misfit, can affect the estimates of important parameters and derived quantities. Unfortunately, there are few standard diagnostic tools available for integrated stock assessment models that can provide the analyst with all the information needed to determine if there is substantial model misspecification. In this study, we use simulation methods to evaluate the ability of commonly-used and recently-proposed diagnostic tests to detect model misspecification in the observation model process (i.e., the incorrect form for survey selectivity), systems dynamics (i.e., incorrect assumed values for steepness of the stock-recruitment relationship and natural mortality), and incorrect data weighting. The diagnostic tests evaluated here were: i) residuals analysis (SDNR and runs test); ii) retrospective analysis; iii) the R0 likelihood component profile; iv) the age-structured production model (ASPM); and v) catch-curve analysis (CCA). The efficacy of the diagnostic tests depended on whether the misspecification was in the observation or systems dynamics model. Residual analyses were easily the best detector of misspecification of the observation model while the ASPM test was the only good diagnostic for detecting misspecification of system dynamics model. Retrospective analysis and the R0 likelihood component profile infrequently detected misspecified models, and CCA had a high probability of rejecting correctly-specified models. Finally, applying multiple carefully selected diagnostics can increase the power to detect misspecification without substantially increasing the probability of falsely concluding there is misspecification when the model is correctly specified

    Inferring genetic connectivity in real populations, exemplified by coastal and oceanic atlantic cod

    Get PDF
    Genetic data are commonly used to estimate connectivity between putative populations, but translating them to demographic dispersal rates is complicated. Theoretical equations that infer a migration rate based on the genetic estimator FST, such as Wright’s equation, FST ≈ 1/(4Nem + 1), make assumptions that do not apply to most real populations. How complexities inherent to real populations affect migration was exemplified by Atlantic cod in the North Sea and Skagerrak and was examined within an age-structured model that incorporated genetic markers. Migration was determined under various scenarios by varying the number of simulated migrants until the mean simulated level of genetic differentiation matched a fixed level of genetic differentiation equal to empirical estimates. Parameters that decreased the Ne/Nt ratio (where Ne is the effective and Nt is the total population size), such as high fishing mortality and high fishing gear selectivity, increased the number of migrants required to achieve empirical levels of genetic differentiation. Higher maturity-at-age and lower selectivity increased Ne/Nt and decreased migration when genetic differentiation was fixed. Changes in natural mortality, fishing gear selectivity, and maturity-at-age within expected limits had a moderate effect on migration when genetic differentiation was held constant. Changes in population size had the greatest effect on the number of migrants to achieve fixed levels of FST, particularly when genetic differentiation was low, FST ≈ 10−3. Highly variable migration patterns, compared with constant migration, resulted in higher variance in genetic differentiation and higher extreme values. Results are compared with and provide insight into the use of theoretical equations to estimate migration among real populations.publishedVersio

    Use of Fatty Acid Analysis to Determine Dispersal of Caspian Terns in the Columbia River Basin, U.S.A.

    Get PDF
    Lethal control, which has been used to reduce local abundances of animals in conflict with humans or with endangered species, may not achieve management goals if animal movement is not considered. In populations with emigration and immigration, lethal control may induce compensatory immigration, if the source of attraction remains unchanged. Within the Columbia River Basin (Washington, U.S.A.), avian predators forage at dams because dams tend to reduce rates of emigration of juvenile salmonids (Oncorhynchus spp.), artificially concentrating these prey. We used differences in fatty acid profiles between Caspian Terns (Hydroprogne caspia) at coastal and inland breeding colonies and terns culled by a lethal control program at a mid-Columbia River dam to infer dispersal patterns. We modeled the rate of loss of fatty acid biomarkers, which are fatty acids that can be traced to a single prey species or groups of species, to infer whether and when terns foraging at dams had emigrated from the coast. Nonmetric multidimensional scaling showed that coastal terns had high levels of C20 and C22 monounsaturated fatty acids, whereas fatty acids of inland breeders were high in C18:3n3, C20:4n6, and C22:5n3. Models of the rate of loss of fatty acid showed that approximately 60% of the terns collected at Rock Island Dam were unlikely to have bred successfully at local (inland) sites, suggesting that terns foraging at dams come from an extensive area. Fatty acid biomarkers may provide accurate information about patterns of dispersal in animal populations and may be extremely valuable in cases where populations differ demonstrably in prey base

    Robustness of potential biological removal to monitoring, environmental, and management uncertainties

    Get PDF
    Support for this project was provided by the Lenfest Ocean Program.The potential biological removal (PBR) formula used to determine a reference point for human-caused mortality of marine mammals in the United States has been shown to be robust to several sources of uncertainty. This study investigates the consequences of the quality of monitoring on PBR performance. It also explores stochastic and demographic uncertainty, catastrophic events, sublethal effects of interactions with fishing gear, and the situation of a marine mammal population subject to bycatch in two fisheries, only one of which is managed. Results are presented for two pinniped and two cetacean life histories. Bias in abundance estimates and whether there is a linear relationship between abundance estimates and true abundance most influence conservation performance. Catastrophic events and trends in natural mortality have larger effects than environmental stochasticity. Managing only one of two fisheries with significant bycatch leads, as expected, to a lower probability of achieving conservation management goals, and better outcomes would be achieved if bycatch in all fisheries were managed. The results are qualitatively the same for the four life histories, but estimates of the probability of population recovery differ.Publisher PDFPeer reviewe

    Estimating bycatch mortality for marine mammals : concepts and best practices

    Get PDF
    Support for this project was provided by the Lenfest Ocean Program (Contract ID: #31008).Fisheries bycatch is the greatest current source of human-caused deaths of marine mammals worldwide, with severe impacts on the health and viability of many populations. Recent regulations enacted in the United States under the Fish and Fish Product Import Provisions of its Marine Mammal Protection Act require nations with fisheries exporting fish and fish products to the United States (hereafter, “export fisheries”) to have or establish marine mammal protection standards that are comparable in effectiveness to the standards for United States commercial fisheries. In many cases, this will require estimating marine mammal bycatch in those fisheries. Bycatch estimation is conceptually straightforward but can be difficult in practice, especially if resources (funding) are limiting or for fisheries consisting of many, small vessels with geographically-dispersed landing sites. This paper describes best practices for estimating bycatch mortality, which is an important ingredient of bycatch assessment and mitigation. We discuss a general bycatch estimator and how to obtain its requisite bycatch-rate and fisheries-effort data. Scientific observer programs provide the most robust bycatch estimates and consequently are discussed at length, including characteristics such as study design, data collection, statistical analysis, and common sources of estimation bias. We also discuss alternative approaches and data types, such as those based on self-reporting and electronic vessel-monitoring systems. This guide is intended to be useful to managers and scientists in countries having or establishing programs aimed at managing marine mammal bycatch, especially those conducting first-time assessments of fisheries impacts on marine mammal populations.Publisher PDFPeer reviewe
    • 

    corecore