504 research outputs found

    Refractory metals as structural materials for fusion high heat flux components

    Get PDF
    Tungsten is the favoured armour material for plasma facing components for future fusion reactors, but studies examining the use of tungsten or other refractory metals in the underlying cooled structures have historically excluded them, leaving current concepts heavily dependent on copper alloys such as copper chrome zirconium. This paper first outlines the challenge of selecting an appropriate alternative material for this application, with reference to historical selection methodology and design solutions, and then re-examines the use of refractory metals in the light of current design priorities and manufacturing techniques. The rationale for considering refractory alloys as structural materials is discussed, showing how this is the result of relatively small changes to the logic previously applied, with a greater emphasis on high temperature operation, a re-evaluation of current costs, a relaxation of absolute activation limits, and the availability of advanced manufacturing techniques such as additive manufacturing. A set of qualitative and quantitative assessment criteria are proposed, drawing on the requirements detailed in the first section; including thermal and mechanical performance, radiation damage tolerance, manufacturability, and cost and availability. Considering these criteria in parallel rather than sequence gives a less binary approach to material selection and instead provides a strengths and weaknesses based summary from which more nuanced conclusions can be drawn. Data on relevant material properties for a range of candidate materials, including elemental refractory metals and a selection of related alloys are gathered from a range of sources and collated using a newly developed set of tools written in the python language. These tools are then used to apply the aforementioned assessment criteria and display the results. The lack of relevant data for a number of promising materials is highlighted, and although a conclusive best material cannot be identified, refractory alloys in general are proposed as worthy of further investigation

    DNA methylation and mRNA expression of SYN III, a candidate gene for schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The synapsin III (<it>SYN III</it>) gene on chromosome 22q is a candidate gene for schizophrenia susceptibility due to its chromosome location, neurological function, expression patterns and functional polymorphisms.</p> <p>Methods</p> <p>This research has established the mRNA expression of <it>SYN III </it>in 22 adult human brain regions as well as the methylation specificity in the closest CpG island of this gene. The methylation specificity studied in 31 brain regions (from a single individual) was also assessed in 51 human blood samples (representing 20 people affected with schizophrenia and 31 normal controls) including a pair of monozygotic twin discordant for schizophrenia and 2 non-human primates.</p> <p>Results</p> <p>The results show that the cytosine methylation in this genomic region is 1) restricted to cytosines in CpG dinucleotides 2) similar in brain regions and blood and 3) appears conserved in primate evolution. Two cytosines (cytosine 8 and 20) localized as the CpG dinucleotide are partially methylated in all brain regions studied. The methylation of these sites in schizophrenia and control blood samples was variable. While cytosine 8 was partially methylated in all samples, the distribution of partial to complete methylation at the cytosine 20 was 22:9 in controls as compared to 18:2 in schizophrenia (p = 0.82). Also, there is no difference in methylation between the affected and unaffected member of a monozygotic twin pair.</p> <p>Conclusion</p> <p>The variation in <it>SYN III </it>methylation studied is 1) not related to schizophrenia in the population sample or a monozygotic twin pair discordant for schizophrenia and 2) not related to the mRNA level of <it>SYN IIIa </it>in different human brain regions.</p

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Overview of the JET ITER-like wall divertor

    Get PDF

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF

    Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas

    Get PDF

    ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade

    Get PDF
    • …
    corecore