9 research outputs found

    Superconducting Cavity Utilization for Linear Accelerator Systems

    No full text
    Self amplified stimulated emission free electron laser production from electron energy above 1.5 GeV is studied to obtain 1-100 nm laser wavelength. Design simulations of linear accelerating system with gun and enjector system has been done in more detail by considering space charge effect for electron beam. Electromagnetic field for superconducting cavities, solenoid fields, cavity defects such as Higher Order Modes, Multipacting, Lorentz Force Detuning, and beam behaviour along the beamline are very important details for this study. Optimised cavity cell design layout are provided in order to obtain quality factor 10910^9 for designed cavities throughout the main linear acceleration. To determine coupling factor, and zero modes and also other modes with relative errors are searched

    Design and simulation of 31/2-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    No full text
    Cakir, Rasit/0000-0002-7104-9069;WOS: 000352815400028Design and simulation of a superconducting gun cavity with 31/2 cells have been studied in order to give the first push to the electron beam for the linear accelerating system at the Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. in this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; E-c=1921 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. the Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. the behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles. (C) 2015 Elsevier B.V. All rights reserved

    Beam dynamic studies at accelerator system of gun for a self-amplified spontaneous emission free electron laser project

    No full text
    One of the important factors in high radiation generation facilities is the production of a high quality electron beam. To do that, the requirements of an optical electron source, such as current, radiation emission, etc. must be met. For this purpose, cavity beam dynamics studies of 1.4, 1.5, 1.6 and 1.8-cell SRF gun were performed. In addition, detailed studies have been made on the solenoid design and the location of the solenoid along the beam path. A design with the most optimized cavity geometry and RF fields for the gun cavity was posed. The injector system was designed for the Turkish SASE-FEL project with cavities of many different geometrical sizes. The most efficient high energy cavity system is determined as 1.6-cell cavity. The emittance value of the beam was achieved as 1.76 +/- 0.42 pi mm mrad and the beam energy reached at the end of cavity was obtained as 3.5 MeV

    Beam dynamic studies at accelerator system of gun for a self-amplified spontaneous emission free electron laser project

    No full text
    One of the important factors in high radiation generation facilities is the production of a high quality electron beam. To do that, the requirements of an optical electron source, such as current, radiation emission, etc. must be met. For this purpose, cavity beam dynamics studies of 1.4, 1.5, 1.6 and 1.8-cell SRF gun were performed. In addition, detailed studies have been made on the solenoid design and the location of the solenoid along the beam path. A design with the most optimized cavity geometry and RF fields for the gun cavity was posed. The injector system was designed for the Turkish SASE-FEL project with cavities of many different geometrical sizes. The most efficient high energy cavity system is determined as 1.6-cell cavity. The emittance value of the beam was achieved as 1.76 +/- 0.42 pi mm mrad and the beam energy reached at the end of cavity was obtained as 3.5 MeV

    Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    No full text
    Cakir, Rasit/0000-0002-7104-9069;WOS: 000352815400028Design and simulation of a superconducting gun cavity with 31/2 cells have been studied in order to give the first push to the electron beam for the linear accelerating system at the Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. in this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; E-c=1921 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. the Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. the behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles. (C) 2015 Elsevier B.V. All rights reserved

    Design and comparison of superconducting rf gun cavities and beam dynamics for linear electron accelerators

    No full text
    Cakir, Rasit/0000-0002-7104-9069WOS: 000470966400011Designs and simulations of 1.4, 1.5, 1.6, and 1.8-cell SRF gun cavities are studied at a linear accelerator gun system and they are compared with each other. We obtain high power beam from high energy electron beam produced at a photocathode with high quantum efficiency, high average current laser with high brightness, and high accelerating gradient. Beam energy of the whole accelerator system is effected mainly by the optimized RF power usage inside cells, the RF power interaction with particle beams, and the accelerated beam obtained by using SRF-gun cells. Thus, the optimized beam parameters, the RF parameters, and the accelerator gun cavity parameters that depend on each cavity geometries of SRF gun are obtained and presented in this paper. Additionally, the energy values of the electrons with optimized emittance at the gun exit are achieved and shown. We will conclude our paper by giving the gun output energies specifying which elliptical cavity-cell geometry is more appropriate to push the beam further in consistent conditions. For the cavity electromagnetic fields and the geometric designs of the cavities and the solenoid, we have utilized 2D Superfish/Poisson and 3D Computer Simulation Technology Programs. Also beam dynamics studies are included for only 1.6-cell SRF gun cavity which has the highest quality factor in order to figure out how the beam behaves along the beamline at the gun system. Transverse emittance (< 2 pi mm mrad) and beam energy (similar to 3.5 MeV) at the exit of the gun system are obtained as expected

    Partial Characterization of Xylanase Produced by Caldicoprobacter algeriensis, a New Thermophilic Anaerobic Bacterium Isolated from an Algerian Hot Spring

    No full text
    To date, xylanases have expanded their use in many processing industries, such as pulp, paper, food, and textile. This study aimed the production and partial characterization of a thermostable xylanase from a novel thermophilic anaerobic bacterium Caldicoprobacter algeriensis strain TH7C1T isolated from a northeast hot spring in Algeria. The obtained results showed that C. algeriensis xylanase seems not to be correlated with the biomass growth profile whereas the maximum enzyme production (140.0 U/ml) was recorded in stationary phase (18 h). The temperature and pH for optimal activities were 70 °C and 11.0, respectively. The enzyme was found to be stable at 50, 60, 70, and 80 °C, with a half-life of 10, 9, 8, and 4 h, respectively. Influence of metal ions on enzyme activity revealed that Ca+2 enhances greatly the relative activity to 151.3 %; whereas Hg2+ inhibited significantly the enzyme. At the best of our knowledge, this is the first report on the production of xylanase by the thermophilic bacterium C. algeriensis. This thermo- and alkaline-tolerant xylanase could be used in pulp bleaching process

    First Look at the Physics Case of TLEP

    Get PDF
    The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e+e− collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the tt¯ threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSB) parameters with unequalled precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study
    corecore