976 research outputs found
Decomposition process in a FeAuPd alloy nanostructured by severe plastic deformation
The decomposition process mechanisms have been investigated in a Fe50Au25Pd25
(at.%) alloy processed by severe plastic deformation. Phases were characterized
by X-ray diffraction and microstructures were observed using transmission
electron microscopy. In the coarse grain alloy homogenized and aged at , the bcc \alpha-Fe and fcc AuPd phases nucleate in the fcc
supersaturated solid solution and grow by a discontinuous precipitation process
resulting in a typical lamellar structure. The grain size of the homogenized
FeAuPd alloy was reduced in a range of 50 to 100nm by high pressure torsion.
Aging at this nanostructure leads to the decomposition
of the solid solution into an equi-axed microstructure. The grain growth is
very limited during aging and the grain size remains under 100nm. The
combination of two phases with different crystallographic structures (bcc
\alpha-Fe and fcc AuPd) and of the nanoscaled grain size gives rise to a
significant hardening of the allo
High Resolution Spectroscopy of Two-Dimensional Electron Systems
Spectroscopic methods involving the sudden injection or ejection of electrons
in materials are a powerful probe of electronic structure and interactions.
These techniques, such as photoemission and tunneling, yield measurements of
the "single particle" density of states (SPDOS) spectrum of a system. The SPDOS
is proportional to the probability of successfully injecting or ejecting an
electron in these experiments. It is equal to the number of electronic states
in the system able to accept an injected electron as a function of its energy
and is among the most fundamental and directly calculable quantities in
theories of highly interacting systems. However, the two-dimensional electron
system (2DES), host to remarkable correlated electron states such as the
fractional quantum Hall effect, has proven difficult to probe
spectroscopically. Here we present an improved version of time domain
capacitance spectroscopy (TDCS) that now allows us to measure the SPDOS of a
2DES with unprecedented fidelity and resolution. Using TDCS, we perform
measurements of a cold 2DES, providing the first direct measurements of the
single-particle exchange-enhanced spin gap and single particle lifetimes in the
quantum Hall system, as well as the first observations of exchange splitting of
Landau levels not at the Fermi surface. The measurements reveal the difficult
to reach and beautiful structure present in this highly correlated system far
from the Fermi surface.Comment: There are formatting and minor textual differences between this
version and the published version in Nature (follow the DOI link below
Thermostable Branched-Chain Amino Acid Transaminases From the Archaea Geoglobus acetivorans and Archaeoglobus fulgidus: Biochemical and Structural Characterization
This is the final version. Available on open access from Frontiers Media via the DOI in this recordTwo new thermophilic branched chain amino acid transaminases have been identified within the genomes of different hyper-thermophilic archaea, Geoglobus acetivorans, and Archaeoglobus fulgidus. These enzymes belong to the class IV of transaminases as defined by their structural fold. The enzymes have been cloned and over-expressed in Escherichia coli and the recombinant enzymes have been characterized both biochemically and structurally. Both enzymes showed high thermostability with optimal temperature for activity at 80 and 85°C, respectively. They retain good activity after exposure to 50% of the organic solvents, ethanol, methanol, DMSO and acetonitrile. The enzymes show a low activity to (R)-methylbenzylamine but no activity to (S)-methylbenzylamine. Both enzymes have been crystallized and their structures solved in the internal aldimine form, to 1.9 Å resolution for the Geoglobus enzyme and 2.0 Å for the Archaeoglobus enzyme. Also the Geoglobus enzyme structure has been determined in complex with the amino acceptor α-ketoglutarate and the Archaeoglobus enzyme in complex with the inhibitor gabaculine. These two complexes have helped to determine the conformation of the enzymes during enzymatic turnover and have increased understanding of their substrate specificity. A comparison has been made with another (R) selective class IV transaminase from the fungus Nectria haematococca which was previously studied in complex with gabaculine. The subtle structural differences between these enzymes has provided insight regarding their different substrate specificities.Biotechnology & Biological Sciences Research Council (BBSRC
Thermally fluctuating superconductors in two dimensions
We describe the different regimes of finite temperature dynamics in the
vicinity of a zero temperature superconductor to insulator quantum phase
transition in two dimensions. New results are obtained for a low temperature
phase-only hydrodynamics, and for the intermediate temperature quantum-critical
region. In the latter case, we obtain a universal relationship between the
frequency-dependence of the conductivity and the value of the d.c. resistance.Comment: Presentation completely revised; 4 pages, 2 figure
Spacial and temporal dynamics of the volume fraction of the colloidal particles inside a drying sessile drop
Using lubrication theory, drying processes of sessile colloidal droplets on a
solid substrate are studied. A simple model is proposed to describe temporal
dynamics both the shape of the drop and the volume fraction of the colloidal
particles inside the drop. The concentration dependence of the viscosity is
taken into account. It is shown that the final shapes of the drops depend on
both the initial volume fraction of the colloidal particles and the capillary
number. The results of our simulations are in a reasonable agreement with the
published experimental data. The computations for the drops of aqueous solution
of human serum albumin (HSA) are presented.Comment: Submitted to EPJE, 7 pages, 8 figure
A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation
Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally
Effect of Peierls transition in armchair carbon nanotube on dynamical behaviour of encapsulated fullerene
The changes of dynamical behaviour of a single fullerene molecule inside an
armchair carbon nanotube caused by the structural Peierls transition in the
nanotube are considered. The structures of the smallest C20 and Fe@C20
fullerenes are computed using the spin-polarized density functional theory.
Significant changes of the barriers for motion along the nanotube axis and
rotation of these fullerenes inside the (8,8) nanotube are found at the Peierls
transition. It is shown that the coefficients of translational and rotational
diffusions of these fullerenes inside the nanotube change by several orders of
magnitude. The possibility of inverse orientational melting, i.e. with a
decrease of temperature, for the systems under consideration is predicted.Comment: 9 pages, 6 figures, 1 tabl
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
The Common Swift Louse Fly, Crataerina pallida: An Ideal Species for Studying Host-Parasite Interactions
Little is known of the life-history of many parasitic species. This hinders a full understanding of host-parasitic interactions. The common swift louse fly, Crataerina pallida Latreille (Diptera: Hippoboscidae), an obligate haematophagous parasite of the Common Swift, Apus apus Linnaeus 1758, is one such species. No detrimental effect of its parasitism upon the host has been found. This may be because too little is known about C. pallida ecology, and therefore detrimental effects are also unknown. This is a review of what is known about the life-history of this parasite, with the aim of promoting understanding of its ecology. New, previously unreported observations about C. pallida made from personal observations at a nesting swift colony are described. Unanswered questions are highlighted, which may aid understanding of this host-parasite system. C. pallida may prove a suitable model species for the study of other host-parasite relationships
Measurement of the top quark mass using the matrix element technique in dilepton final states
We present a measurement of the top quark mass in pp¯ collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb−1. The matrix element technique is applied to tt¯ events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt¯ decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt=173.93±1.84 GeV
- …