765 research outputs found

    Paleoceanography of the eastern equatorial Pacific during the Neogene: Synthesis of Leg 138 drilling results

    Get PDF
    The primary objective of Leg 138 was to provide detailed information about the ocean\u27s response to global climate change during the Neogene. Two north-south transects were drilled (95° and 110°W) within the region of equatorial divergence-driven upwelling (and thus high accumulation rates and resolution) and spanning the major equatorial ocean current boundaries (and thus recording a high-amplitude signal of the response of the sediment to climatically and/or tectonically driven changes in ocean circulation). The Neogene is marked by a number of well-known climatic and tectonic events (the closing of the Isthmus of Panama, the onset of North Atlantic Deep Water (NADW), the rapid uplift of the Himalayas, the major intensification of Northern Hemisphere glaciation), and the response of the ocean before and after these events was a key focus of Leg 138 drilling. To address these objectives at the highest resolution possible, the Leg 138 scientific staff developed a number of new shipboard strategies and analytical procedures. These included the real-time analysis of the near-continuous gamma ray attenuation porosity evaluator (GRAPE) and susceptibility profiles produced by the multisensor track (MST) on unsplit cores to monitor core recovery and, if necessary, to modify the drilling strategy to ensure proper offset of coring gaps; the collection of near-continuous color reflectance data on split cores; the logging of the first hole drilled at each site to optimize drilling and sampling strategies for subsequent holes; and the use of multiple continuous records to unambiguously construct complete composite sections for each site. The complete, continuous records provided by the GRAPE (with a temporal resolution of often yr), in conjunction with an excellent microfossil stratigraphy and often excellent magnetostratigraphy, allowed for astronomical tuning of the stratigraphic record and resulted in a set of internally consistent, high-resolution age models that provide a secure, absolute time scale for the past 6 m.y. For the period before 6 m.y., the absolute time calibration is less secure, but it is still better than any previously offered. The high-resolution stratigraphic framework of Leg 138 provided new insight into the previously ambiguous tectonic history of the region. By assuming that maximum sedimentation rates along the north-south transect would be expected at the equator, the Leg 138 stratigraphy supports the 1985 work of Cox and Engerbretson, which calls for two different poles of rotation of the Pacific Plate during the interval 0-20 Ma. The Leg 138 plate reconstructions also support several previously hypothesized ridge crest jumps and a slowing of the absolute motion of the Nazca Plate at about 5 Ma. Although Leg 138 data that predates about 13 Ma is limited, the impression that one can gain from these data is that the eastern equatorial Pacific was characterized by relatively high carbonate concentrations and accumulation rates before about 11 Ma. This pattern was interrupted occasionally by rapid massive outpourings of near-monospecific laminated diatom oozes that probably represent the formation of massive mats along strong surface-water fronts. The laminated diatom oozes (LDO) continue to be present in the Leg 138 record (many of them being expressed as seismic reflections) until about 4.4 Ma. Carbonate accumulation rates begin to decline slowly between 11 and 9.8 Ma, when, at about 9.5 Ma, a near-complete loss of carbonate (the carbonate crash ) takes place everywhere in the Leg 138 region (and beyond), except at the westernmost sites close to the equator. The carbonate crash was a time of fundamental change for the eastern equatorial Pacific, and perhaps for most of the ocean basins. Unlike many of the carbonate variations that precede and postdate it, this crash represents a major dissolution event whose effects can be traced seismically in the central and western Pacific. The changes in bottom-water chemistry associated with this event (or series of events) appear to be related to the early phases of the closing of the Panama Gateway. The role of NADW initiation and intensification for controlling carbonate accumulation in the eastern equatorial Pacific is still not resolved; however, ocean modeling demonstrates that the closing of the Panama Gateway may also have a direct influence on NADW production. Therefore, the effects of changes in the Panama Gateway sill depth and the production of NADW may be manifested in the history of eastern equatorial Pacific sedimentation. The carbonate crash was followed by a recovery of the carbonate system (except in the Guatemala and Peru basins, which never recovered) that led up to the late Miocene/early Pliocene sedimentation rate maxima, during which equatorial sedimentation rates are as much as five times greater than those of the late Pliocene or Pleistocene. Examination of modern productivity/preser vation relationships implies that the sedimentation rate maximum was the result of enhanced productivity. The distribution of eolian sediments and isotopic gradients, along with an analysis of the modes of variance in carbonate deposition over the last 6 m.y., suggest a more northerly position of the Intertropical Convergence Zone (ITCZ), a stronger north-south gradient across the equator, and a more zonal circulation focused along the equator during the time of maximum sedimentation. The mechanisms suggested for these changes in circulation patterns include the response of the eastern equatorial Pacific to the closing of the Isthmus of Panama, as well as a global increase in the flux of Ca and Si into the oceans, a possible response to evolution of the Himalayas and the Tibetan Plateau. In an effort to understand the response of the climate system to external (orbital) forcing, 6-m.y.-long, continuous records of carbonate (derived from GRAPE), δ 1 8 and insolation were analyzed and compared. Evolutionary spectral calculations of the variance and coherence among these records indicate that the insolation record is dominated by precessional frequencies, but that the relative importance of the two precessional frequencies has changed significantly over the last 6 m.y. In general, precessional forcing is not found in the carbonate or isotopic records. In the tilt band, however, a linear response is present between solar forcing and the carbonate and isotope records over some intervals. The carbonate record appears to be tightly coupled to the tilt component of insolation before about 1.9 Ma; however, the isotope record does not begin to show sensitivity to orbital tilt until about 4.5 Ma, the time of significant changes in sedimentation patterns in the eastern equatorial Pacific. Only during the last 500,000 yr do all frequencies respond in a similar manner; we also see a marked increase in the response of the isotopic record to orbital forcing (including 100,000- and 400,000-yr periods)

    1995, Spatial and temporal variability of late Neogene equatorial Pacific carbonate

    Get PDF
    High-resolution, continuous records of GRAPE wet bulk density (a carbonate proxy) from Ocean Drilling Program Leg 138 provide one the opportunity for a detailed study of eastern equatorial Pacific Ocean carbonate sedimentation during the last 6 m.y. The transect of sites drilled spans both latitude and longitude in the eastern equatorial Pacific from 90° to 110°W and from 5°S to 10°N. Two modes of variability are resolved through the use of Empirical Orthogonal Function (EOF) analysis. In the presence of large tectonic and climatic boundary condition changes over the last 6 m.y., the dominant mode of spatial variability in carbonate sedimentation is remarkably constant. The first mode accounts for over 50% of the variance in the data, and is consistent with forcing by equatorial divergence. This mode characterizes both carbonate concentration and carbonate mass accumulation rate time series. Variability in the first mode is highly coherent with insolation, indicating a strong linear relationship between equatorial Pacific car bonate sedimentation and Milankovitch variability. Frequency domain analysis indicates that the coupling to equatorial divergence in carbonate sedimentation is strongest in the precession band (19-23 k.y.) and weakest though present at lower frequencies. The second mode of variability has a consistent spatial pattern of east-west asymmetry over the past 4 m.y. only; prior to 4 Ma, a different mode of spatial variability may have been present, possibly suggesting influence by closure of the Isthmus of Panama or other tectonic changes. The second mode of variability may indicate influence by CaCO3 dissolution. The second mode of variability is not highly coherent with insolation. Comparison of the modes of carbonate variability to a 4 m.y. record of benthic δ 1 8 indicates that although overall correlation between carbonate and δ 1 8 is low, both modes of variability in carbonate sedimentation are coherent with δ 1 8 changes at some frequencies. The first mode of carbonate variability is coherent with Sites 846/849 δ 1 8 at the dominant insolation periods, and the second mode is coherent at 100 k.y. during the last 2 m.y. The coherence between carbonate sedimentation and δ 1 8 in both EOF modes suggests that multiple uncorrelated modes of variability operated within the climate system during the late Neogene

    Downhole logging as a paeoceanographic tool on ocean drilling program leg 138: Interface between high-resolution stratigraphy and regional syntheses

    Get PDF
    On Ocean Drilling Program (ODP) Leg 138, standard shipboard procedures were modified to allow for the real-time monitoring of several laboratory core-scanning systems that provide centimeter-scale measurements of saturated bulk density, magnetic susceptibility and digital color reflectance. These continuous, high-resolution data sets were used to ensure the proper offset of multiple holes and to splice together complete sedimentary sections. Typically, the spliced, continuousediment sections were found to be about 10% longer than the section drilled, as measured by the length of the drill string. While the source of this elongation is not yet fully understood, it must be compensated for in order to property determine sediment fluxes and mass accumulation rates. Downhole logging, in conjunction with inverse correlation techniques provided a means to determine where the distortion occurred and to correct back to true in sire depths. Downhole logging also provides a means, through the generation of synthetic seismograms, of precisely relating the paleoceanographic events found in the core record to the high-resolution seismic record. Once correlated to the seismic record, the spatial and temporal extent of paleoceanographic events can be traced well beyond the borehole. Most seismic events in the equatorial Pacific are related to rapid changes in carbonate contenthat, in turn, are related to both productivity events (often expressed as monospecific laminated diatom oozes) and times of enhanced dissolution. While many of these events may have oceanwide extent, others, like the absence of carbonate in the late-Miocene to Recent in the Guatemala Basin have been shown to be regional and confined to only the deeper portions of the Guatemala Basin. As we identify and trace specific paleoceanographic events in the seismic record, we can begin to explore the response of the ocean through gradients of latitude, productivity, and depth

    Initial Reports of the Deep Sea Drilling Project, vol. 85

    Get PDF
    Covering Leg 85 of the cruises of the Drilling Vessel Glomar Challenger Los Angeles, California, to Honolulu, Hawaii March-April 1982. Includes six chapters: 1. INTRODUCTION: BACKGROUND AND EXPLANATORY NOTES, DEEP SEA DRILLING PROJECT LEG 85, CENTRAL EQUATORIAL PACIFIC 2. SITE 571 3. SITE 572 4. SITE 573 5. SITE 574 6. SITE 57

    Evidence for a mid-Pleistocene change of ice-drift pattern in the Nordic seas

    Get PDF
    Sediment proxy records from a continuous, 1.5 million year long deep-sea sediment core from a site in the western Norwegian Sea were used to obtain new insights into the nature of palaeoceanographic change in the northern North Atlantic (Nordic seas) during the climatic shift of the Mid-Pleistocene Revolution (MPR). Red-green sediment colour and magnetic susceptibility records both reveal significant differences in their mean values when comparing the intervals older than 700 000 yr (700 ka) with those from the past 500 kyr. The timing and duration of these changes indicates that the MPR in the Nordic seas is characterised by a gradual transition lasting about 200 kyr. Together with further sedimentological evidence this suggests that the mid-Pleistocene climate shift was accompanied by a general change in ice-drift pattern. It is further proposed that prior to the onset of the major late Pleistocene glaciations in the Northern Hemisphere a significant proportion of the ice in the eastern Nordic seas originated from a southern provenance, whereas later it dominantly came from the surrounding landmasses

    Derivation of Del180 from sediment core log data\u27 Implications for millennial-scale climate change in the Labrador Sea

    Get PDF
    Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface water δ18O records of Neogloboquadrina pachyderma (left coiled); hence the surface water δ18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 years). For the Labrador Sea, sediment core logs contain important information about deepwater current velocities and also reflect the variable input of ice-rafted debris from different sources as inferred from grain-size analysis, the relation of density and P wave velocity, and magnetic susceptibility. For the last glacial, faster deepwater currents, which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted from several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deepwater currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly thereafter, while the abrupt atmospheric temperature rise happened after a larger time lag of ≥ 1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial timescales but decoupling at orbital timescales

    Carbonate deposition and benthicδ13C in the subarctic Pacific: implications for changes of the oceanic carbonate system during the past 750,000 years

    Get PDF
    Carbonate deposition at two core sites in the subarctic Pacific (48°N, 133°W; 2.9 km and 3.7 km water depth) follows the standard Pacific carbonate cycles, with glacial values being increased over interglacial values. Benthicδ13C follows the global trend; that is, glacial values are more negative than interglacial values. Comparison with the benthicδ13C record of North Atlantic DSDP Site 552 (56°N, 23°W; 2.3 km water depth) shows the North Pacific records to be nearly in phase with and continuously more negative relative to the North Atlantic record. This suggests that concentrations of∑CO2(org) were permanently higher in the North Pacific than in the North Atlantic during the past 750,000 years conceivably supporting the hypothesis that there was no deep-water forming in the late Pleistocene North Pacific. Whereas one would expect that the North Pacific deep waters were continuously more corrosive to carbonates than deep waters in the North Atlantic, carbonate deposition at the deep North Pacific core sites is enhanced during glacial periods, and occasionally higher than at shallow North Atlantic Site 552 even though Site 552 was probably above lysocline-depth during most of the late Pleistocene. This apparent paradox can be resolved only by invoking an increase in alkalinity in the glacial North Pacific which would have increased the degree of carbonate ion saturation and thereby improved the state of carbonate preservation

    Carbon 13 in Pacific Deep and Intermediate Waters, 0-370 ka: Implications for Ocean Circulation and Pleistocene CO2

    Get PDF
    Stable isotopes in benthic foraminifera from Pacific sediments are used to assess hypotheses of systematic shifts in the depth distribution of oceanic nutrients and carbon during the ice ages. The carbon isotope differences between ∼1400 and ∼3200 m depth in the eastern Pacific are consistently greater in glacial than interglacial maxima over the last ∼370 kyr. This phenomenon of “bottom heavy” glacial nutrient distributions, which Boyle proposed as a cause of Pleistocene CO2 change, occurs primarily in the 1/100 and 1/41 kyr−1 “Milankovitch” orbital frequency bands but appears to lack a coherent 1/23 kyr−1 band related to orbital precession. Averaged over oxygen-isotope stages, glacial δ13C gradients from ∼1400 to ∼3200 m depth are 0.1‰ greater than interglacial gradients. The range of extreme shifts is somewhat larger, 0.2 to 0.5‰. In both cases, these changes in Pacific δ13C distributions are much smaller than observed in shorter records from the North Atlantic. This may be too small to be a dominant cause of atmospheric pCO2 change, unless current models underestimate the sensitivity of pCO2 to nutrient redistributions. This dampening of Pacific relative to Atlantic δ13C depth gradient favors a North Atlantic origin of the phenomenon, although local variations of Pacific intermediate water masses can not be excluded at present
    corecore