2,074 research outputs found

    True Direction Equilibrium Flux Method Applications on Rectangular 2D Meshes

    Get PDF
    In a finite volume CFD method for unsteady flow fluxes of mass, momentum and energy are exchanged between cells over a series of small time steps. The conventional approach, which we will refer to as "direction decoupling", is to estimate fluxes across interfaces in a regular array of cells by using a one-dimensional flux expression based on the component of flow velocity normal to the interface. This means that fluxes cannot be exchanged between diagonally adjacent cells since they share no cell interface, even if the local flow conditions dictate that the fluxes should flow diagonally. The direction decoupling imposed by the numerical method requires that the fluxes reach a diagonally adjacent cell in two time-steps. Here we present a 'true direction flux method', which is an updated version of Pullin's Equilibrium Flux Method (EFM) in which fluxes are derived from kinetic theory. Previous implementations of EFM in higher dimensions have used direction decoupling as described above. In this "True Direction Equilibrium Flux Method" (TDEFM) fluxes flow not only between cells sharing an interface, but also to diagonally connecting cells, or ultimately to any cell in the grid. We compare TDEFM results to those from a direction-decoupled methods using 1D fluxes calculated with EFM and a Godunov solver. The test flow is a cylindrically symmetric implosion which we solve on a two-dimensional Cartesian grid, with cell interfaces parallel to the x and y axes. Because the flow is in theory radially symmetric, any lack of radial symmetry in the solution can be used to assess the inaccuracies in the computed results. The conventional direction decoupling methods with 1D solver flux calculations (EFM or Godunov Method) produced greater asymmetries (inaccuracies) in the solution than did the new method. TDEFM requires 1% less CPU time than the direction decoupled Riemann solver and 15% more CPU time than direction decoupled EFM

    Genome mapping and characterization of the Anopheles gambiae heterochromatin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heterochromatin plays an important role in chromosome function and gene regulation. Despite the availability of polytene chromosomes and genome sequence, the heterochromatin of the major malaria vector <it>Anopheles gambiae </it>has not been mapped and characterized.</p> <p>Results</p> <p>To determine the extent of heterochromatin within the <it>An. gambiae </it>genome, genes were physically mapped to the euchromatin-heterochromatin transition zone of polytene chromosomes. The study found that a minimum of 232 genes reside in 16.6 Mb of mapped heterochromatin. Gene ontology analysis revealed that heterochromatin is enriched in genes with DNA-binding and regulatory activities. Immunostaining of the <it>An. gambiae </it>chromosomes with antibodies against <it>Drosophila melanogaster </it>heterochromatin protein 1 (HP1) and the nuclear envelope protein lamin Dm<sub>0 </sub>identified the major invariable sites of the proteins' localization in all regions of pericentric heterochromatin, diffuse intercalary heterochromatin, and euchromatic region 9C of the 2R arm, but not in the compact intercalary heterochromatin. To better understand the molecular differences among chromatin types, novel Bayesian statistical models were developed to analyze genome features. The study found that heterochromatin and euchromatin differ in gene density and the coverage of retroelements and segmental duplications. The pericentric heterochromatin had the highest coverage of retroelements and tandem repeats, while intercalary heterochromatin was enriched with segmental duplications. We also provide evidence that the diffuse intercalary heterochromatin has a higher coverage of DNA transposable elements, minisatellites, and satellites than does the compact intercalary heterochromatin. The investigation of 42-Mb assembly of unmapped genomic scaffolds showed that it has molecular characteristics similar to cytologically mapped heterochromatin.</p> <p>Conclusions</p> <p>Our results demonstrate that <it>Anopheles </it>polytene chromosomes and whole-genome shotgun assembly render the mapping and characterization of a significant part of heterochromatic scaffolds a possibility. These results reveal the strong association between characteristics of the genome features and morphological types of chromatin. Initial analysis of the <it>An. gambiae </it>heterochromatin provides a framework for its functional characterization and comparative genomic analyses with other organisms.</p

    The First HET Planet: A Companion to HD 37605

    Full text link
    We report the first detection of a planetary-mass companion to a star using the High Resolution Spectrograph (HRS) of the Hobby-Eberly Telescope (HET). The HET-HRS now gives routine radial velocity precision of 2-3 m/s for high SNR observations of quiescent stars. The planetary-mass companion to the metal-rich K0V star HD37605 has an orbital period of 54.23 days, an orbital eccentricity of 0.737, and a minimum mass of 2.84 Jupiter masses. The queue-scheduled operation of the Hobby-Eberly Telescope enabled us to discovery of this relatively short-period planet with a total observation time span of just two orbital periods. The ability of queue-scheduled large-aperture telescopes to respond quickly to interesting and important results demonstrates the power of this new approach in searching for extra-solar planets as well as in other ares of research requiring rapid response time critical observations.Comment: 4 Pages, 2 figures. Accepted in Astrophysical Journal Letters, http://austral.as.utexas.edu/planets/hd37605/hd37605.htm

    Performance evaluation of automated urine microscopy as a rapid, non-invasive approach for the diagnosis of non-gonococcal urethritis.

    Get PDF
    OBJECTIVES: Gram-stained urethral smear (GSUS), the standard point-of-care test for non-gonococcal urethritis (NGU) is operator dependent and poorly specific. The performance of rapid automated urine flow cytometry (AUFC) of first void urine (FVU) white cell counts (UWCC) for predicting Mycoplasma genitalium and Chlamydia trachomatis urethral infections was assessed and its application to asymptomatic infection was evaluated. METHODS: Receiver operating characteristic curve analysis, determining FVU-UWCC threshold for predicting M. genitalium or C. trachomatis infection was performed on 208 'training' samples from symptomatic patients and subsequently validated using 228 additional FVUs obtained from prospective unselected patients. RESULTS: An optimal diagnostic threshold of >29 UWC/”L gave sensitivities and specificities for either infection of 81.5% (95% CI 65.1% to 91.6%) and 85.8% (79.5% to 90.4%), respectively, compared with 86.8% (71.1% to 95%) and 64.7% (56.9% to 71.7%), respectively, for GSUS, using the training set samples. FVU-UWCC demonstrated sensitivities and specificities of 69.2% (95% CI 48.1% to 84.9%) and 92% (87.2% to 95.2%), respectively, when using validation samples. In asymptomatic patients where GSUS was not used, AUFC would have enabled more infections to be detected compared with clinical considerations only (71.4% vs 28.6%; p=0.03). The correlation between UWCC and bacterial load was stronger for M. genitalium compared with C. trachomatis (τ=0.426, p≀0.001 vs τ=0.295, p=0.022, respectively). CONCLUSIONS: AUFC offers improved specificity over microscopy for predicting C. trachomatis or M. genitalium infection. Universal AUFC may enable non-invasive diagnosis of asymptomatic NGU at the PoC. The degree of urethral inflammation exhibits a stronger association with pathogen load for M. genitalium compared with C. trachomatis

    Pneumocystis Pneumonia in HIV-positive Adults, Malawi1

    Get PDF
    In a prospective study of 660 HIV-positive Malawian adults, we diagnosed Pneumocystis jirovecii pneumonia (PcP) using clinical features, induced sputum for immunofluorescent staining, real-time PCR, and posttreatment follow-up. PcP incidence was highest in patients with the lowest CD4 counts but uncommon compared with incidences of pulmonary tuberculosis and bacterial pneumonia

    Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler

    Get PDF
    We report the distribution of planets as a function of planet radius (R_p), orbital period (P), and stellar effective temperature (Teff) for P < 50 day orbits around GK stars. These results are based on the 1,235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 Earth radii (Re). For each of the 156,000 target stars we assess the detectability of planets as a function of R_p and P. We also correct for the geometric probability of transit, R*/a. We consider first stars within the "solar subset" having Teff = 4100-6100 K, logg = 4.0-4.9, and Kepler magnitude Kp < 15 mag. We include only those stars having noise low enough to permit detection of planets down to 2 Re. We count planets in small domains of R_p and P and divide by the included target stars to calculate planet occurrence in each domain. Occurrence of planets varies by more than three orders of magnitude and increases substantially down to the smallest radius (2 Re) and out to the longest orbital period (50 days, ~0.25 AU) in our study. For P < 50 days, the radius distribution is given by a power law, df/dlogR= k R^\alpha. This rapid increase in planet occurrence with decreasing planet size agrees with core-accretion, but disagrees with population synthesis models. We fit occurrence as a function of P to a power law model with an exponential cutoff below a critical period P_0. For smaller planets, P_0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over Teff = 3600-7100 K, spanning M0 to F2 dwarfs. The occurrence of 2-4 Re planets in the Kepler field increases with decreasing Teff, making these small planets seven times more abundant around cool stars than the hottest stars in our sample. [abridged]Comment: Submitted to ApJ, 22 pages, 10 figure

    Cardiovascular risk scoring and magnetic resonance imaging detected subclinical cerebrovascular disease

    Get PDF
    AIMS: Cardiovascular risk factors are used for risk stratification in primary prevention. We sought to determine if simple cardiac risk scores are associated with magnetic resonance imaging (MRI)-detected subclinical cerebrovascular disease including carotid wall volume (CWV), carotid intraplaque haemorrhage (IPH), and silent brain infarction (SBI). METHODS AND RESULTS: A total of 7594 adults with no history of cardiovascular disease (CVD) underwent risk factor assessment and a non-contrast enhanced MRI of the carotid arteries and brain using a standardized protocol in a population-based cohort recruited between 2014 and 2018. The non-lab-based INTERHEART risk score (IHRS) was calculated in all participants; the Framingham Risk Score was calculated in a subset who provided blood samples (n = 3889). The association between these risk scores and MRI measures of CWV, carotid IPH, and SBI was determined. The mean age of the cohort was 58 (8.9) years, 55% were women. Each 5-point increase (∌1 SD) in the IHRS was associated with a 9 mm3 increase in CWV, adjusted for sex (P \u3c 0.0001), a 23% increase in IPH [95% confidence interval (CI) 9-38%], and a 32% (95% CI 20-45%) increase in SBI. These associations were consistent for lacunar and non-lacunar brain infarction. The Framingham Risk Score was also significantly associated with CWV, IPH, and SBI. CWV was additive and independent to the risk scores in its association with IPH and SBI. CONCLUSION: Simple cardiovascular risk scores are significantly associated with the presence of MRI-detected subclinical cerebrovascular disease, including CWV, IPH, and SBI in an adult population without known clinical CVD

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo
    • 

    corecore