60 research outputs found

    Reducing backaction when measuring temporal correlations in quantum systems

    Full text link
    Dynamic correlations of quantum observables are challenging to measure due to measurement backaction incurred at early times. Recent work [P. Uhrich et al., Phys. Rev. A, 96:022127 (2017)] has shown that ancilla-based noninvasive measurements are able to reduce this backaction, allowing for dynamic correlations of single-site spin observables to be measured. We generalise this result to correlations of arbitrary spin observables and extend the measurement protocol to simultaneous noninvasive measurements which allow for real and imaginary parts of correlations to be extracted from a single set of measurements. We use positive operator-valued measures to analyse the dynamics generated by the ancilla-based measurements. Using this framework we prove that special observables exist for which measurement backaction is of no concern, so that dynamic correlations of these can be obtained without making use of ancillas.Comment: 13 page

    Probing unitary two-time correlations in a neutral atom quantum simulator

    Full text link
    Measuring unitarily-evolved quantum mechanical two-time correlations is challenging in general. In a recent paper [P.~Uhrich {\em et al.}, Phys.\ Rev.~A {\bf 96}, 022127 (2017)], a considerable simplification of this task has been pointed out to occur in spin-1/21/2 lattice models, bringing such measurements into reach of state-of-the-art or near-future quantum simulators of such models. Here we discuss the challenges of an experimental implementation of measurement schemes of two-time correlations in quantum gas microscopes or microtrap arrays. We propose a modified measurement protocol that mitigates these challenges, and we rigorously estimate the accuracy of the protocols by means of Lieb-Robinson bounds. On the basis of these bounds we identify a parameter regime in which the proposed protocols allow for accurate measurements of the desired two-time correlations.Comment: 15 pages, 2 figure

    The ICC In Darfur-Savior Or Spoiler?

    Get PDF
    As we have witnessed since the beginning of the 1990s, international law, in particular international criminal justice, can have a significant impact on the peace process and the reconciliation of societies in post-conflict periods

    Validity of a Novel Digitally Enhanced Skills Training Station for Freehand Distal Interlocking.

    Get PDF
    Background and Objectives: Freehand distal interlocking of intramedullary nails is technically demanding and prone to handling issues. It requires precise placement of a screw through the nail under fluoroscopy guidance and can result in a time consuming and radiation expensive procedure. Dedicated training could help overcome these problems. The aim of this study was to assess construct and face validity of new Digitally Enhanced Hands-On Surgical Training (DEHST) concept and device for training of distal interlocking of intramedullary nails. Materials and Methods: Twenty-nine novices and twenty-four expert surgeons performed interlocking on a DEHST device. Construct validity was evaluated by comparing captured performance metrics-number of X-rays, nail hole roundness, drill tip position and drill hole accuracy-between experts and novices. Face validity was evaluated with a questionnaire concerning training potential and quality of simulated reality using a 7-point Likert scale. Results: Face validity: mean realism of the training device was rated 6.3 (range 4-7). Training potential and need for distal interlocking training were both rated with a mean of 6.5 (range 5-7), with no significant differences between experts and novices, p ≥ 0.234. All participants (100%) stated that the device is useful for procedural training of distal nail interlocking, 96% wanted to have it at their institution and 98% would recommend it to colleagues. Construct validity: total number of X-rays was significantly higher for novices (20.9 ± 6.4 versus 15.5 ± 5.3, p = 0.003). Success rate (ratio of hit and miss attempts) was significantly higher for experts (novices hit: n = 15; 55.6%; experts hit: n = 19; 83%, p = 0.040). Conclusion: The evaluated training device for distal interlocking of intramedullary nails yielded high scores in terms of training capability and realism. Furthermore, construct validity was proven by reliably discriminating between experts and novices. Participants indicate high further training potential as the device may be easily adapted to other surgical tasks

    The ideal site of cement application in cement augmented sacroiliac screw fixation: the biomechanical perspective.

    Get PDF
    PURPOSE To compare construct stability of cement augmented sacroiliac screws using two different cementation sites in a biomechanical fragility fracture model of the pelvis. METHODS A fracture model with an incomplete fracture of the sacral ala and complete fracture of the anterior pelvic ring mimicking a FFP IIB fragility fracture of the pelvis was established in five fresh frozen human cadaveric pelvises. Sacral fracture stabilization was achieved with bilateral 7.3 mm fully threaded sacroiliac screws. Cement augmentation was performed at the tip of the screw (body of S1; Group A) on one side, and at the midshaft of the screw (sacral ala; Group B) on the contralateral side. Biomechanical testing was conducted separately on both sides comprising cyclic loading of axial forces transferred through the tested hemipelvis from L5 to the ipsilateral acetabulum. Combined angular displacement in flexion and internal rotation ("gap angle"), angular displacement of the ilium in relation to the screw ("screw tilt ilium"), and screw tip cutout were evaluated. RESULTS Relative interfragmentary movements were associated with significantly higher values in group A versus group B for "gap angle" (2.4° vs. 1.4°; p < 0.001), and for "screw tilt ilium" (3.3° vs. 1.4°; p < 0.001), respectively. No significant difference was indicated for screw tip cutout between the two groups (0.6 mm [Group A] vs. 0.8 mm [Group B]; p = 0.376). CONCLUSION The present study demonstrated less fragment and screw displacements in a FFP IIB fracture model under physiologic cyclic loading by cement augmentation of sacroiliac screws at the level of the lateral mass compared to the center of vertebral body of S1

    Multibranch pulse synthesis and electro-optic detection of subcycle multi-terahertz electric fields

    Get PDF
    We present a robust, compact pulse synthesis scheme generating intense phase-locked subcycle multi-terahertz waveforms. The ultrabroadband laser fundamental is split into two parallel branches driving optical rectification in crystals of GaSe and LiGaS2, each operated at the group velocity matching point. The coherent combination of the resulting pulses yields a continuous multi-terahertz spectrum covering 1.5 optical octaves. The corresponding 0.8-cycle electric field waveform is directly mapped out by electro-optic sampling, revealing peak fields of 15 kV/cm at a repetition rate of 0.4 MHz. The multiplexable and power scalable scheme opens the door to strong-field custom-tailored waveforms driving nonlinear optics and light wave electronics. (C) 2019 Optical Society of Americ

    Biomarker, Imaging, and Clinical Factors Associated With Overt and Covert Stroke in Patients With Atrial Fibrillation.

    Get PDF
    BACKGROUND Atrial fibrillation is a major risk factor for stroke and silent brain infarcts. We studied whether a multimodal approach offers additional insights to the CHA2DS2-VASc score in predicting stroke or new brain infarcts on magnetic resonance imaging (MRI) over a 2-year follow-up. METHODS Swiss-AF is a prospective, multicenter cohort study of patients with known atrial fibrillation. We included patients with available brain MRI both at enrollment and 2 years later. The dates of the baseline and follow-up visits ranged from March 2014 to November 2020. The primary outcome was assessed 2 years after baseline and was defined as a composite of clinically identified stroke or any new brain infarct on the 2-year MRI. We compared a multivariable logistic regression model including prespecified clinical, biomarker, and baseline MRI variables to the CHA2DS2-VASc score. RESULTS We included 1232 patients, 89.8% of them taking oral anticoagulants. The primary outcome occurred in 78 patients (6.3%). The following baseline variables were included in the final multivariate model and were significantly associated with the primary outcome: white matter lesion volume in milliliters (adjusted odds ratio [aOR], 1.91 [95% CI, 1.45-2.56]), NT-proBNP (N-terminal pro-B-type natriuretic peptide; aOR, 1.75 [95% CI, 1.20-2.63]), GDF-15 (growth differentiation factor-15; aOR, 1.68 [95% CI, 1.11-2.53]), serum creatinine (aOR, 1.50 [95% CI, 1.02-2.22]), IL (interleukin)-6 (aOR, 1.37 [95% CI, 1.00-1.86]), and hFABP (heart-type fatty acid-binding protein; aOR, 0.48 [95% CI, 0.31-0.73]). Overall performance and discrimination of the new model was superior to that of the CHA2DS2-VASc score (C statistic, 0.82 [95% CI, 0.77-0.87] versus 0.64 [95% CI, 0.58-0.70]). CONCLUSIONS In patients with atrial fibrillation, a model incorporating white matter lesion volume on baseline MRI and selected blood markers yielded new insights on residual stroke risk despite a high proportion of patients on oral anticoagulants. This may be relevant to develop further preventive measures

    Polarimetric observations of OH masers in proto-planetary nebulae

    Full text link
    The 1612 and 1667 MHz OH maser lines have been measured in all four Stokes parameters in 47 proto-planetary nebula (PPN) candidates. Out of 42 objects detected, 40 and 34 are 1612 and 1667 MHz emitters, respectively. The spectral extent of the 1667 MHz line overshoots that of the 1612 MHz line in about 80% of the targets. 52% and 26% of the 1612 and 1667 MHz sources, respectively, show linear polarization in at least some features. Circular polarization is more frequent, occurring in 78% and 32% of sources of the respective OH lines. The percentage polarization is usually small (<15%) reaching up to 50-80% in a few sources. Features of linearly polarized emission are usually weak (0.5-4Jy) and narrow (0.3-0.5kms^{-1}). The strength of magnetic field inferred from likely Zeeman pairs in two sources of a few mG is consistent with values reported elsewhere for those classes of objects. An upper limit of the electron density in the envelope of OH17.7-2.0 derived from the difference in the position angle of polarization vectors for the two OH lines is about 1cm^{-3}. Distinct profiles of polarization position angle at 1612 and 1667 MHz are seen in about one third of the sources and strongly suggest that the envelopes are permeated with structured magnetic fields. The geometry of the magnetic field is implicated as an important cause of the depolarization found in some PPN candidates. For the subset of targets which show axisymmetric shells in the optical or radio images we found a dominance of magnetic field components which are orthogonal to the long axis of the nebulae. This finding supports the hypothesis that such bipolar lobes are shaped by the magnetic field.Comment: Accepted for publication in A&A; 11 pages, 7 figure

    Orbital excitation blockade and algorithmic cooling in quantum gases

    Get PDF
    Interaction blockade occurs when strong interactions in a confined few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow the detection and manipulation of the constituent particles, whether they are electrons, spins, atoms, or photons. The diverse applications range from single-electron transistors based on electronic Coulomb blockade to quantum logic gates in Rydberg atoms. We have observed a new kind of interaction blockade in transferring ultracold atoms between orbitals in an optical lattice. In this system, atoms on the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth and observe a staircase-type excitation behavior as we cross the interaction-split resonances by tuning the modulation frequency. As an application of orbital excitation blockade (OEB), we demonstrate a novel algorithmic route for cooling quantum gases. Our realization of algorithmic cooling utilizes a sequence of reversible OEB-based quantum operations that isolate the entropy in one part of the system, followed by an irreversible step that removes the entropy from the gas. This work opens the door to cooling quantum gases down to ultralow entropies, with implications for developing a microscopic understanding of strongly correlated electron systems that can be simulated in optical lattices. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a roadmap for the implementation of two-qubit gates in a quantum computing architecture with natural scalability.Comment: 6 pages, 4 figure
    • …
    corecore