269 research outputs found

    The Advanced Virgo+ status

    Get PDF
    The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4). The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitivity band and the Frequency Dependent Squeezing (FDS) to reduce quantum noise at all frequencies. The main difference of the Advanced Virgo + detector with respect to the LIGO detectors is the presence of marginally stable recycling cavities, with respect to the stable recycling cavities present in the LIGO detectors, which increases the difficulties in controlling the interferometer in presence of defects (both thermal and cold defects). This work will focus on the interferometer commissioning, highlighting the control challenges to maintain the detector in the working point which maximizes the sensitivity and the duty cycle for scientific data taking

    Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Search for subsolar-mass black hole binaries in the second part of Advanced LIGO’s and Advanced Virgo’s third observing run

    Get PDF
    We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2–1.0 M and mass ratio q ≥ 0.1 in Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo data collected between 2019 November 1, 15:00 UTC and 2020 March 27, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2 yr−1. We estimate the sensitivity of our search over the entirety of Advanced LIGO’s and Advanced Virgo’s third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs fPBH 0.6 (at 90 per cent confidence) in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions, we are unable to rule out fPBH = 1. For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes, we find an upper bound fDBH < 10−5 on the fraction of atomic dark matter collapsed into black holes

    A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-wave Candidates from the Third Gravitational-wave Observing Run

    Get PDF
    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift- BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers

    Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data

    Get PDF

    All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data

    Get PDF
    We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from 108-10^{-8} to 10910^{-9} Hz/s. No statistically-significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude h0h_0 are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are 1.1×1025{\sim}1.1\times10^{-25} at 95\% confidence-level. The minimum upper limit of 1.10×10251.10\times10^{-25} is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals

    Search for subsolar-mass black hole binaries in the second part of Advanced LIGO's and Advanced Virgo's third observing run

    Full text link
    We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 MM_\odot -- 1.0M1.0 M_\odot and mass ratio q0.1q \geq 0.1 in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2 yr1\mathrm{yr}^{-1}. We estimate the sensitivity of our search over the entirety of Advanced LIGO's and Advanced Virgo's third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs fPBH0.6f_\mathrm{PBH} \gtrsim 0.6 (at 90% confidence) in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions we are unable to rule out fPBH=1f_\mathrm{PBH} = 1. For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes, we find an upper bound fDBH<105f_{\mathrm{DBH}} < 10^{-5} on the fraction of atomic dark matter collapsed into black holes.Comment: https://dcc.ligo.org/P220013

    First joint observation by the underground gravitational-wave detector KAGRA with GEO 600

    Get PDF
    We report the results of the first joint observation of the KAGRA detector with GEO 600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with 3 km arms, located in Kamioka, Gifu, Japan. GEO 600 is a British-German laser interferometer with 600 m arms, located near Hannover, Germany. GEO 600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO-KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals and the spacetime volume for which the network is sensitive to binary neutron-star coalescences. We also place lower limits on the distances to the gamma-ray bursts analyzed based on the non-detection of an associated gravitational-wave signal for several signal models, including binary coalescences. These analyses demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Get PDF
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band [10,2000] Hz[10,2000]\rm~Hz have been used. No significant detection was found and 95%\% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10267.6\times 10^{-26} at 142 Hz\simeq 142\rm~Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.Comment: 25 pages, 5 figure
    corecore