10 research outputs found

    Quantification de l’aération pulmonaire sur des images CT de patients atteints du syndrome de détresse respiratoire aiguë

    No full text
    Acute respiratory distress syndrome (ARDS) induces a disturbance in the vital balance between oxygen intake and carbon dioxide output from the respiratory system. Indeed, alveoli composing the lungs are collapsed or filled with fluid in case of ARDS, impeding the normal ventilation process. To maintain patients diagnosed with ARDS alive, mechanical ventilation is routinely used. The latter restores the oxygen-carbon dioxide balance, but can cause ventilation induced lung injuries (VILI). In order to reduce VILI and to provide patient-specific management, aeration quantification is necessary. Computed tomography (CT) image, already used in the clinical diagnostic process, allows this quantification because it contains density information. Yet, preliminary lung segmentation is needed. This thesis proposes to automate lung segmentation on CT images. Supervised deep learning is used to address the challenge of segmenting poorly contrasted lungs, caused by the presence of high density lesions. Focus is made on data prevalence and on the way of presenting them to the model during training. Hence, various aspects of data management, as transfer learning, amount of details in the context, diversity or relevance, are explored with 2D or 3D U-net architectures. Eventually, in the pre-clinical context, a 3D production model is provided to segment lungs of patients with ARDS and therefore improve their care through personalized mechanical ventilation setting.Le syndrome de détresse respiratoire aiguë (SDRA) provoque un dérèglement de l'équilibre vital entre oxygène apporté et dioxyde de carbone évacué par le système respiratoire. En effet, les alvéoles qui composent les poumons sont collabées ou remplies de liquide en cas de SDRA, ce qui empêche le processus normal de ventilation. Pour maintenir en vie les patients diagnostiqués du SDRA, le recours à la ventilation mécanique est systématique. Cette dernière permet de rétablir l'équilibre oxygène-dioxyde de carbone, mais peut provoquer des lésions pulmonaires supplémentaires. Dans le but de réduire ces lésions et adapter la prise en charge de chaque patient, il est nécessaire de quantifier l'aération pulmonaire. L'image tomodensitométrique (ou CT pour computed tomography), déjà utilisée en clinique dans le processus diagnostique, permet cette quantification, car elle contient des informations de densité, mais exige une segmentation préliminaire des poumons. Cette thèse propose d'automatiser la tâche de segmentation des poumons sur les images CT. L'apprentissage profond supervisé est utilisé pour répondre au défi que constitue la segmentation de poumons peu contrastés, car présentant des lésions denses. L'accent est mis sur l'importance des données et de la manière dont celles-ci sont présentées au modèle lors de l'entraînement. Divers aspects de la gestion des données, tels que le transfert d'apprentissage, les détails du contexte, la diversité ou encore la pertinence de l'information traitée, sont explorés en utilisant des architectures de U-net 2D ou 3D. Enfin, dans le contexte pré-clinique, un modèle de production est proposé pour la segmentation des poumons de patients avec SDRA afin d'améliorer leur prise en charge par le réglage personnalisé de la ventilation mécanique

    Thèse de doctorat

    No full text

    Quantification of pulmonary aeration in CT images of patients with acute respiratory distress syndromeation

    No full text
    Le syndrome de détresse respiratoire aiguë (SDRA) provoque un dérèglement de l'équilibre vital entre oxygène apporté et dioxyde de carbone évacué par le système respiratoire. En effet, les alvéoles qui composent les poumons sont collabées ou remplies de liquide en cas de SDRA, ce qui empêche le processus normal de ventilation. Pour maintenir en vie les patients diagnostiqués du SDRA, le recours à la ventilation mécanique est systématique. Cette dernière permet de rétablir l'équilibre oxygène-dioxyde de carbone, mais peut provoquer des lésions pulmonaires supplémentaires. Dans le but de réduire ces lésions et adapter la prise en charge de chaque patient, il est nécessaire de quantifier l'aération pulmonaire. L'image tomodensitométrique (ou CT pour computed tomography), déjà utilisée en clinique dans le processus diagnostique, permet cette quantification, car elle contient des informations de densité, mais exige une segmentation préliminaire des poumons. Cette thèse propose d'automatiser la tâche de segmentation des poumons sur les images CT. L'apprentissage profond supervisé est utilisé pour répondre au défi que constitue la segmentation de poumons peu contrastés, car présentant des lésions denses. L'accent est mis sur l'importance des données et de la manière dont celles-ci sont présentées au modèle lors de l'entraînement. Divers aspects de la gestion des données, tels que le transfert d'apprentissage, les détails du contexte, la diversité ou encore la pertinence de l'information traitée, sont explorés en utilisant des architectures de U-net 2D ou 3D. Enfin, dans le contexte pré-clinique, un modèle de production est proposé pour la segmentation des poumons de patients avec SDRA afin d'améliorer leur prise en charge par le réglage personnalisé de la ventilation mécanique.Acute respiratory distress syndrome (ARDS) induces a disturbance in the vital balance between oxygen intake and carbon dioxide output from the respiratory system. Indeed, alveoli composing the lungs are collapsed or filled with fluid in case of ARDS, impeding the normal ventilation process. To maintain patients diagnosed with ARDS alive, mechanical ventilation is routinely used. The latter restores the oxygen-carbon dioxide balance, but can cause ventilation induced lung injuries (VILI). In order to reduce VILI and to provide patient-specific management, aeration quantification is necessary. Computed tomography (CT) image, already used in the clinical diagnostic process, allows this quantification because it contains density information. Yet, preliminary lung segmentation is needed. This thesis proposes to automate lung segmentation on CT images. Supervised deep learning is used to address the challenge of segmenting poorly contrasted lungs, caused by the presence of high density lesions. Focus is made on data prevalence and on the way of presenting them to the model during training. Hence, various aspects of data management, as transfer learning, amount of details in the context, diversity or relevance, are explored with 2D or 3D U-net architectures. Eventually, in the pre-clinical context, a 3D production model is provided to segment lungs of patients with ARDS and therefore improve their care through personalized mechanical ventilation setting

    Quantification de l’aération pulmonaire sur des images CT de patients atteints du syndrome de détresse respiratoire aiguë

    No full text
    Acute respiratory distress syndrome (ARDS) induces a disturbance in the vital balance between oxygen intake and carbon dioxide output from the respiratory system. Indeed, alveoli composing the lungs are collapsed or filled with fluid in case of ARDS, impeding the normal ventilation process. To maintain patients diagnosed with ARDS alive, mechanical ventilation is routinely used. The latter restores the oxygen-carbon dioxide balance, but can cause ventilation induced lung injuries (VILI). In order to reduce VILI and to provide patient-specific management, aeration quantification is necessary. Computed tomography (CT) image, already used in the clinical diagnostic process, allows this quantification because it contains density information. Yet, preliminary lung segmentation is needed. This thesis proposes to automate lung segmentation on CT images. Supervised deep learning is used to address the challenge of segmenting poorly contrasted lungs, caused by the presence of high density lesions. Focus is made on data prevalence and on the way of presenting them to the model during training. Hence, various aspects of data management, as transfer learning, amount of details in the context, diversity or relevance, are explored with 2D or 3D U-net architectures. Eventually, in the pre-clinical context, a 3D production model is provided to segment lungs of patients with ARDS and therefore improve their care through personalized mechanical ventilation setting.Le syndrome de détresse respiratoire aiguë (SDRA) provoque un dérèglement de l'équilibre vital entre oxygène apporté et dioxyde de carbone évacué par le système respiratoire. En effet, les alvéoles qui composent les poumons sont collabées ou remplies de liquide en cas de SDRA, ce qui empêche le processus normal de ventilation. Pour maintenir en vie les patients diagnostiqués du SDRA, le recours à la ventilation mécanique est systématique. Cette dernière permet de rétablir l'équilibre oxygène-dioxyde de carbone, mais peut provoquer des lésions pulmonaires supplémentaires. Dans le but de réduire ces lésions et adapter la prise en charge de chaque patient, il est nécessaire de quantifier l'aération pulmonaire. L'image tomodensitométrique (ou CT pour computed tomography), déjà utilisée en clinique dans le processus diagnostique, permet cette quantification, car elle contient des informations de densité, mais exige une segmentation préliminaire des poumons. Cette thèse propose d'automatiser la tâche de segmentation des poumons sur les images CT. L'apprentissage profond supervisé est utilisé pour répondre au défi que constitue la segmentation de poumons peu contrastés, car présentant des lésions denses. L'accent est mis sur l'importance des données et de la manière dont celles-ci sont présentées au modèle lors de l'entraînement. Divers aspects de la gestion des données, tels que le transfert d'apprentissage, les détails du contexte, la diversité ou encore la pertinence de l'information traitée, sont explorés en utilisant des architectures de U-net 2D ou 3D. Enfin, dans le contexte pré-clinique, un modèle de production est proposé pour la segmentation des poumons de patients avec SDRA afin d'améliorer leur prise en charge par le réglage personnalisé de la ventilation mécanique

    Quantification de l'aération pulmonaire sur des images CT de patients atteints du syndrome de détresse respiratoire aiguë

    No full text
    Acute respiratory distress syndrome (ARDS) induces a disturbance in the vital balancebetween oxygen intake and carbon dioxide output from the respiratory system. Indeed,alveoli composing the lungs are collapsed or filled with fluid in case of ARDS, impeding thenormal ventilation process. To maintain patients diagnosed with ARDS alive, mechanicalventilation is routinely used. The latter restores the oxygen-carbon dioxide balance, butcan cause ventilation induced lung injuries (VILI). In order to reduce VILI and to providepatient-specific management, aeration quantification is necessary. Computed tomography(CT) image, already used in the clinical diagnostic process, allows this quantificationbecause it contains density information. Yet, preliminary lung segmentation is needed.This thesis proposes to automate lung segmentation on CT images. Supervised deeplearning is used to address the challenge of segmenting poorly contrasted lungs, causedby the presence of high density lesions. Focus is made on data prevalence and on theway of presenting them to the model during training. Hence, various aspects of datamanagement, as transfer learning, amount of details in the context, diversity or relevance,are explored with 2D or 3D U-net architectures. Eventually, in the pre-clinical context, a3D production model is provided to segment lungs of patients with ARDS and thereforeimprove their care through personalized mechanical ventilation setting.Le syndrome de détresse respiratoire aiguë (SDRA) provoque un dérèglement de l’équilibrevital entre oxygène apporté et dioxyde de carbone évacué par le système respiratoire.En effet, les alvéoles qui composent les poumons sont collabées ou remplies de liquideen cas de SDRA, ce qui empêche le processus normal de ventilation. Pour mainteniren vie les patients diagnostiqués du SDRA, le recours à la ventilation mécanique estsystématique. Cette dernière permet de rétablir l’équilibre oxygène-dioxyde de carbone,mais peut provoquer des lésions pulmonaires supplémentaires. Dans le but de réduireces lésions et adapter la prise en charge de chaque patient, il est nécessaire de quantifierl’aération pulmonaire. L’image tomodensitométrique (ou CT pour computed tomography),déjà utilisée en clinique dans le processus diagnostique, permet cette quantification, carelle contient des informations de densité, mais exige une segmentation préliminaire despoumons. Cette thèse propose d’automatiser la tâche de segmentation des poumonssur les images CT. L’apprentissage profond supervisé est utilisé pour répondre au défique constitue la segmentation de poumons peu contrastés, car présentant des lésionsdenses. L’accent est mis sur l’importance des données et de la manière dont celles-ci sontprésentées au modèle lors de l’entraînement. Divers aspects de la gestion des données,tels que le transfert d’apprentissage, les détails du contexte, la diversité ou encore lapertinence de l’information traitée, sont explorés en utilisant des architectures de U-net2D ou 3D. Enfin, dans le contexte pré-clinique, un modèle de production est proposépour la segmentation des poumons de patients avec SDRA afin d’améliorer leur prise encharge par le réglage personnalisé de la ventilation mécanique

    Quantification de l'aération pulmonaire sur des images CT de patients atteints du syndrome de détresse respiratoire aiguë

    No full text
    Acute respiratory distress syndrome (ARDS) induces a disturbance in the vital balancebetween oxygen intake and carbon dioxide output from the respiratory system. Indeed,alveoli composing the lungs are collapsed or filled with fluid in case of ARDS, impeding thenormal ventilation process. To maintain patients diagnosed with ARDS alive, mechanicalventilation is routinely used. The latter restores the oxygen-carbon dioxide balance, butcan cause ventilation induced lung injuries (VILI). In order to reduce VILI and to providepatient-specific management, aeration quantification is necessary. Computed tomography(CT) image, already used in the clinical diagnostic process, allows this quantificationbecause it contains density information. Yet, preliminary lung segmentation is needed.This thesis proposes to automate lung segmentation on CT images. Supervised deeplearning is used to address the challenge of segmenting poorly contrasted lungs, causedby the presence of high density lesions. Focus is made on data prevalence and on theway of presenting them to the model during training. Hence, various aspects of datamanagement, as transfer learning, amount of details in the context, diversity or relevance,are explored with 2D or 3D U-net architectures. Eventually, in the pre-clinical context, a3D production model is provided to segment lungs of patients with ARDS and thereforeimprove their care through personalized mechanical ventilation setting.Le syndrome de détresse respiratoire aiguë (SDRA) provoque un dérèglement de l’équilibrevital entre oxygène apporté et dioxyde de carbone évacué par le système respiratoire.En effet, les alvéoles qui composent les poumons sont collabées ou remplies de liquideen cas de SDRA, ce qui empêche le processus normal de ventilation. Pour mainteniren vie les patients diagnostiqués du SDRA, le recours à la ventilation mécanique estsystématique. Cette dernière permet de rétablir l’équilibre oxygène-dioxyde de carbone,mais peut provoquer des lésions pulmonaires supplémentaires. Dans le but de réduireces lésions et adapter la prise en charge de chaque patient, il est nécessaire de quantifierl’aération pulmonaire. L’image tomodensitométrique (ou CT pour computed tomography),déjà utilisée en clinique dans le processus diagnostique, permet cette quantification, carelle contient des informations de densité, mais exige une segmentation préliminaire despoumons. Cette thèse propose d’automatiser la tâche de segmentation des poumonssur les images CT. L’apprentissage profond supervisé est utilisé pour répondre au défique constitue la segmentation de poumons peu contrastés, car présentant des lésionsdenses. L’accent est mis sur l’importance des données et de la manière dont celles-ci sontprésentées au modèle lors de l’entraînement. Divers aspects de la gestion des données,tels que le transfert d’apprentissage, les détails du contexte, la diversité ou encore lapertinence de l’information traitée, sont explorés en utilisant des architectures de U-net2D ou 3D. Enfin, dans le contexte pré-clinique, un modèle de production est proposépour la segmentation des poumons de patients avec SDRA afin d’améliorer leur prise encharge par le réglage personnalisé de la ventilation mécanique

    Improving motion‐mask segmentation in thoracic CT with multiplanar U‐nets

    No full text
    International audiencePurpose. Motion-mask segmentation from thoracic computed tomography (CT) images is the process of extracting the region that encompasses lungs and viscera, where large displacements occur during breathing. It has been shown to help image registration between different respiratory phases. This registration step is, for example, useful for radiotherapy planning or calculating local lung ventilation. Knowing the location of motion discontinuity, that is, sliding motion near the pleura, allows a better control of the registration preventing unrealistic estimates. Nevertheless, existing methods for motion-mask segmentation are not robust enough to be used in clinical routine. This article shows that it is feasible to overcome this lack of robustness by using a lightweight deep-learning approach usable on a standard computer, and this even without data augmentation or advanced model design.Methods. A convolutional neural-network architecture with three 2D U-nets for the three main orientations (sagittal, coronal, axial) was proposed. Predictions generated by the three U-nets were combined by majority voting to provide a single 3D segmentation of the motion mask. The networks were trained on a database of nonsmall cell lung cancer 4D CT images of 43 patients. Training and evaluation were done with a K-fold cross-validation strategy. Evaluation was based on a visual grading by two experts according to the appropriateness of the segmented motion mask for the registration task, and on a comparison with motion masks obtained by a baseline method using level sets. A second database (76 CT images of patients with early-stage COVID-19), unseen during training, was used to assess the generalizability of the trained neural network.Results. The proposed approach outperformed the baseline method in terms of quality and robustness: the success rate increased from urn:x-wiley:00942405:media:mp15347:mp15347-math-0001 to urn:x-wiley:00942405:media:mp15347:mp15347-math-0002 without producing any failure. It also achieved a speed-up factor of 60 with GPU, or 17 with CPU. The memory footprint was low: less than 5 GB GPU RAM for training and less than 1 GB GPU RAM for inference. When evaluated on a dataset with images differing by several characteristics (CT device, pathology, and field of view), the proposed method improved the success rate from urn:x-wiley:00942405:media:mp15347:mp15347-math-0003 to urn:x-wiley:00942405:media:mp15347:mp15347-math-0004.Conclusion. With 5-s processing time on a mid-range GPU and success rates around urn:x-wiley:00942405:media:mp15347:mp15347-math-0005, the proposed approach seems fast and robust enough to be routinely used in clinical practice. The success rate can be further improved by incorporating more diversity in training data via data augmentation and additional annotated images from different scanners and diseases. The code and trained model are publicly available

    Quantitative-analysis of computed tomography in COVID-19 and non COVID-19 ARDS patients: A case-control study

    No full text
    International audienceHighlights• Lung weight is significantly increased in all COVID+ ARDS patients.• Lung potential for recruitment of COVID+ ARDS patients is lower than COVID− ARDS.• A substantial proportion of COVID+ patients exhibit large amount of tidal hyperinflation.PurposeThe aim of this study was to assess whether the computed tomography (CT) features of COVID-19 (COVID+) ARDS differ from those of non-COVID-19 (COVID−) ARDS patients.Materials and methodsThe study is a single-center prospective observational study performed on adults with ARDS onset ≤72 h and a PaO2/FiO2 ≤ 200 mmHg. CT scans were acquired at PEEP set using a PEEP-FiO2 table with VT adjusted to 6 ml/kg predicted body weight.Results22 patients were included, of whom 13 presented with COVID-19 ARDS. Lung weight was significantly higher in COVID− patients, but all COVID+ patients presented supranormal lung weight values. Noninflated lung tissue was significantly higher in COVID− patients (36 ± 14% vs. 26 ± 15% of total lung weight at end-expiration, p < 0.01). Tidal recruitment was significantly higher in COVID− patients (20 ± 12 vs. 9 ± 11% of VT, p < 0.05). Lung density histograms of 5 COVID+ patients with high elastance (type H) were similar to those of COVID− patients, while those of the 8 COVID+ patients with normal elastance (type L) displayed higher aerated lung fraction

    Precision of CT-derived alveolar recruitment assessed by human observers and a machine learning algorithm in moderate and severe ARDS

    No full text
    International audienceBACKGROUND: Assessing measurement error in alveolar recruitment on computed tomography (CT) is of paramount importance to select a reliable threshold identifying patients with high potential for alveolar recruitment and to rationalize positive end-expiratory pressure (PEEP) setting in acute respiratory distress syndrome (ARDS). The aim of this study was to assess both intra- and inter-observer smallest real difference (SRD) exceeding measurement error of recruitment using both human and machine learning-made lung segmentation (i.e., delineation) on CT. This single-center observational study was performed on adult ARDS patients. CT were acquired at end-expiration and end-inspiration at the PEEP level selected by clinicians, and at end-expiration at PEEP 5 and 15 cmH(2)O. Two human observers and a machine learning algorithm performed lung segmentation. Recruitment was computed as the weight change of the non-aerated compartment on CT between PEEP 5 and 15 cmH(2)O. RESULTS: Thirteen patients were included, of whom 11 (85%) presented a severe ARDS. Intra- and inter-observer measurements of recruitment were virtually unbiased, with 95% confidence intervals (CI(95%)) encompassing zero. The intra-observer SRD of recruitment amounted to 3.5 [CI(95%) 2.4-5.2]% of lung weight. The human-human inter-observer SRD of recruitment was slightly higher amounting to 5.7 [CI(95%) 4.0-8.0]% of lung weight, as was the human-machine SRD (5.9 [CI(95%) 4.3-7.8]% of lung weight). Regarding other CT measurements, both intra-observer and inter-observer SRD were close to zero for the CT-measurements focusing on aerated lung (end-expiratory lung volume, hyperinflation), and higher for the CT-measurements relying on accurate segmentation of the non-aerated lung (lung weight, tidal recruitment…). The average symmetric surface distance between lung segmentation masks was significatively lower in intra-observer comparisons (0.8 mm [interquartile range (IQR) 0.6-0.9]) as compared to human-human (1.0 mm [IQR 0.8-1.3] and human-machine inter-observer comparisons (1.1 mm [IQR 0.9-1.3]). CONCLUSIONS: The SRD exceeding intra-observer experimental error in the measurement of alveolar recruitment may be conservatively set to 5% (i.e., the upper value of the CI(95%)). Human-machine and human-human inter-observer measurement errors with CT are of similar magnitude, suggesting that machine learning segmentation algorithms are credible alternative to humans for quantifying alveolar recruitment on CT
    corecore