159 research outputs found

    A Drought Indicator based on Ecosystem Responses to Water Availability: The Normalized Ecosystem Drought Index

    Get PDF
    Drought is one of the most destructive natural disasters causing serious damages to human society, and studies have projected more severe and widespread droughts in the coming decades associated with the warming climate. Although several drought indices have been developed for drought monitoring, most of them were based on large scale environmental conditions rather than ecosystem transitional patterns to drought. Here, we propose using the ecosystem function oriented Normalized Ecosystem Drought Index (NEDI) to quantify drought severity, loosely related to Sprengel’s and Liebig’s Law of the Minimum for plant nutrition. Extensive eddy covariance measurements from 60 AmeriFlux sites across 8 IGBP vegetation types were used to validate the use of NEDI. The results show that NEDI can reasonably capture ecosystem transitional responses to limited water availability, suggesting that drought conditions detected by NEDI are ecosystem function oriented. The wildly used Palmer Drought Severity Index (PDSI), on the other hand, does not have a clear relationship with ecosystem responses to drought conditions because ecosystem adaptation ability is not considered in PDSI calculation.We thank the principal investigators of the AmeriFlux network, and the U.S. Department of Energy’s Office of Science for funding the AmeriFlux data resources. We thank the U.S. Department of Energy Lawrence Berkeley Lab Ameriflux Network Management Project for core site support. This research was supported through the National Science Foundation award EF1137306/MIT subaward 5710003122 to the University of California Davis; and other government, industry and foundation sponsors of the MIT Joint Program on the Science and Policy of Global Change. For a complete list of sponsors and U.S. government funding sources, please visit http://globalchange.mit.edu/sponsors/all

    Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds

    No full text
    International audienceVertical gradients of mixing ratios of volatile organic compounds have been measured in a Ponderosa pine forest in Central California (38.90° N, 120.63° W, 1315m). These measurements reveal large quantities of previously unreported oxidation products of short lived biogenic precursors. The emission of biogenic precursors must be in the range of 13-66µmol m-2h-1 to produce the observed oxidation products. That is 6-30 times the emissions of total monoterpenes observed above the forest canopy on a molar basis. These reactive precursors constitute a large fraction of biogenic emissions at this site, and are not included in current emission inventories. When oxidized by ozone they should efficiently produce secondary aerosol and hydroxyl radicals

    Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds

    No full text
    International audienceMeasurements of volatile organic compounds in a pine forest (Central California, 38.90° N, 120.63° W, 1315 m) reveal large quantities of previously unreported oxidation products of short lived biogenic precursors. The emission of biogenic precursors must be in the range of 13?66 µmol m?2 h?1 to produce the observed oxidation products. That is 6?30 times the emissions of total monoterpenes observed above the forest canopy on a molar basis. These reactive precursors constitute the largest fraction of biogenic emissions at this site, and are not included in current emission inventories. When oxidized by ozone they should efficiently produce secondary aerosol and hydroxyl radicals

    On Measuring Net Ecosystem Carbon Exchange over Tall Vegetation on Complex Terrain

    Get PDF
    To assess annual budgets of CO2 exchange between the biosphere and atmosphere over representative ecosystems, long-term measurements must be made over ecosystems that do not exist on ideal terrain. How to interpret eddy covariance measurements correctly remains a major task. At present, net ecosystem CO2 exchange is assessed, by members of the micrometeorological community, as the sum of eddy covariance measurements and the storage of CO2 in the underlying air. This approach, however, seems unsatisfactory as numerous investigators are reporting that it may be causing nocturnal respiration flux densities to be underestimated. A new theory was recently published by Lee (1998, Agricultural and Forest Meteorology 91: 39– 50) for assessing net ecosystem-atmosphere CO2 exchange (Ne) over non-ideal terrain. It includes a vertical advection term. We apply this equation over a temperate broadleaved forest growing in undulating terrain. Inclusion of the vertical advection term yields hourly, daily and annual sums of net ecosystem CO2 exchange that are more ecologically correct during the growing season. During the winter dormant period, on the other hand, corrected CO2 flux density measurements of an actively respiring forest were near zero. This observation is unrealistic compared to chamber measurements and model calculations. Only during midday, when the atmosphere is well-mixed, do measurements of Ne match estimates based on model calculations and chamber measurements. On an annual basis, sums of Ne without the advection correction were 40% too large, as compared with computations derived from a validated and process-based model. With the inclusion of the advection correction term, we observe convergence between measured and calculated values of Ne on hourly, daily and yearly time scales. We cannot, however, conclude that inclusion of a one-dimensional, vertical advection term into the continuity equation is sufficient for evaluating CO2 exchange over tall forests in complex terrain. There is an indication that the neglected term, u(c/x), is non-zero and that CO2 may be leaking from the sides of the control volume during the winter. In this circumstance, forest floor CO2 efflux densities exceed effluxes measured above the canopy

    Estimating the subsolar magnetopause position from soft X-ray images using a low-pass image filter

    Get PDF
    The Lunar Environment heliospheric X-ray Imager (LEXI) and Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) missions will image the Earth’s dayside magnetopause and cusps in soft X-rays after their respective launches in the near future, to specify global magnetic reconnection modes for varying solar wind conditions. To support the success of these scientific missions, it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images. In this research, we introduce a new geometric equation that calculates the subsolar magnetopause position (\begin{document}Rs {R}_{\mathrm{s}} \end{document}) from a satellite position, the look direction of the instrument, and the angle at which the X-ray emission is maximized. Two assumptions are used in this method: (1) The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause, and (2) the magnetopause surface near the subsolar point is almost spherical and thus \begin{document}Rs {R}_{\mathrm{s}} \end{document} is nearly equal to the radius of the magnetopause curvature. We create synthetic soft X-ray images by using the Open Geospace General Circulation Model (OpenGGCM) global magnetohydrodynamic model, the galactic background, the instrument point spread function, and Poisson noise. We then apply the fast Fourier transform and Gaussian low-pass filters to the synthetic images to remove noise and obtain accurate look angles for the soft X-ray peaks. From the filtered images, we calculate \begin{document}Rs {R}_{\mathrm{s}} \end{document} and its accuracy for different LEXI locations, look directions, and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth. Our method estimates \begin{document}Rs {R}_{\mathrm{s}} \end{document} with an accuracy of \begin{document}10  cm3 {10\;\mathrm{c}\mathrm{m}}^{-3} \end{document}. The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields. The method captures the magnetopause motion during southward interplanetary magnetic field turnings. Consequently, the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions. This technique will support the LEXI and SMILE missions in achieving their scientific objectives

    FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities

    Get PDF
    FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long–term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S. FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET http://www–eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite. Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand–scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil–plant–atmosphere trace gas exchange models. Findings so far include 1) net CO2 exchange of temperate broadleaved forests increases by about 5.7 g C m–2 day–1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net CO2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities

    Zoonotic hepatitis E: animal reservoirs and emerging risks

    Get PDF
    Hepatitis E virus (HEV) is responsible for enterically-transmitted acute hepatitis in humans with two distinct epidemiological patterns. In endemic regions, large waterborne epidemics with thousands of people affected have been observed, and, in contrast, in non-endemic regions, sporadic cases have been described. Although contaminated water has been well documented as the source of infection in endemic regions, the modes of transmission in non-endemic regions are much less known. HEV is a single-strand, positive-sense RNA virus which is classified in the Hepeviridae family with at least four known main genotypes (1–4) of mammalian HEV and one avian HEV. HEV is unique among the known hepatitis viruses, in which it has an animal reservoir. In contrast to humans, swine and other mammalian animal species infected by HEV generally remain asymptomatic, whereas chickens infected by avian HEV may develop a disease known as Hepatitis-Splenomegaly syndrome. HEV genotypes 1 and 2 are found exclusively in humans while genotypes 3 and 4 are found both in humans and other mammals. Several lines of evidence indicate that, in some cases involving HEV genotypes 3 and 4, animal to human transmissions occur. Furthermore, individuals with direct contact with animals are at higher risk of HEV infection. Cross-species infections with HEV genotypes 3 and 4 have been demonstrated experimentally. However, not all sources of human infections have been identified thus far and in many cases, the origin of HEV infection in humans remains unknown

    Pregnancy outcomes and risk of placental malaria after artemisinin-based and quinine-based treatment for uncomplicated falciparum malaria in pregnancy: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis.

    Get PDF
    Malaria in pregnancy, including asymptomatic infection, has a detrimental impact on foetal development. Individual patient data (IPD) meta-analysis was conducted to compare the association between antimalarial treatments and adverse pregnancy outcomes, including placental malaria, accompanied with the gestational age at diagnosis of uncomplicated falciparum malaria infection. A systematic review and one-stage IPD meta-analysis of studies assessing the efficacy of artemisinin-based and quinine-based treatments for patent microscopic uncomplicated falciparum malaria infection (hereinafter uncomplicated falciparum malaria) in pregnancy was conducted. The risks of stillbirth (pregnancy loss at ≥ 28.0 weeks of gestation), moderate to late preterm birth (PTB, live birth between 32.0 and < 37.0 weeks), small for gestational age (SGA, birthweight of < 10th percentile), and placental malaria (defined as deposition of malaria pigment in the placenta with or without parasites) after different treatments of uncomplicated falciparum malaria were assessed by mixed-effects logistic regression, using artemether-lumefantrine, the most used antimalarial, as the reference standard. Registration PROSPERO: CRD42018104013. Of the 22 eligible studies (n = 5015), IPD from16 studies were shared, representing 95.0% (n = 4765) of the women enrolled in literature. Malaria treatment in this pooled analysis mostly occurred in the second (68.4%, 3064/4501) or third trimester (31.6%, 1421/4501), with gestational age confirmed by ultrasound in 91.5% (4120/4503). Quinine (n = 184) and five commonly used artemisinin-based combination therapies (ACTs) were included: artemether-lumefantrine (n = 1087), artesunate-amodiaquine (n = 775), artesunate-mefloquine (n = 965), and dihydroartemisinin-piperaquine (n = 837). The overall pooled proportion of stillbirth was 1.1% (84/4361), PTB 10.0% (619/4131), SGA 32.3% (1007/3707), and placental malaria 80.1% (2543/3035), and there were no significant differences of considered outcomes by ACT. Higher parasitaemia before treatment was associated with a higher risk of SGA (adjusted odds ratio [aOR] 1.14 per 10-fold increase, 95% confidence interval [CI] 1.03 to 1.26, p = 0.009) and deposition of malaria pigment in the placenta (aOR 1.67 per 10-fold increase, 95% CI 1.42 to 1.96, p < 0.001). The risks of stillbirth, PTB, SGA, and placental malaria were not different between the commonly used ACTs. The risk of SGA was high among pregnant women infected with falciparum malaria despite treatment with highly effective drugs. Reduction of malaria-associated adverse birth outcomes requires effective prevention in pregnant women

    PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models

    Get PDF
    BACKGROUND: PG545 is a heparan sulfate (HS) mimetic that inhibits tumour angiogenesis by sequestering angiogenic growth factors in the extracellular matrix (ECM), thus limiting subsequent binding to receptors. Importantly, PG545 also inhibits heparanase, the only endoglycosidase which cleaves HS chains in the ECM. The aim of the study was to assess PG545 in various solid tumour and metastasis models
    corecore