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ON MEASURING NET ECOSYSTEM CARBON EXCHANGE OVER
TALL VEGETATION ON COMPLEX TERRAIN
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EVA FALGE!
1Ecosystem Science Division, Department of Environmental Science, Policy and Management,151
Hilgard Hall, University of California, Berkeley, CA 94720, U.S.AGSIRO Land and Water, GPO
Box 821, Canberra, ACT 2601, Australi%é\tmospheric Turbulence and Diffusion Division, NOAA,
PO Box 2456, Oak Ridge, TN 37831-2456, U.S?Bepartment of Land, Air and Water Resources,
University of California, Davis, CA 95616, U.S.A.

(Received in final form 11 October 1999)

Abstract. To assess annual budgets of £€xchange between the biosphere and atmosphere over
representative ecosystems, long-term measurements must be made over ecosystems that do not exist
on ideal terrain. How to interpret eddy covariance measurements correctly remains a major task.
At present, net ecosystem G@xchange is assessed, by members of the micrometeorological com-
munity, as the sum of eddy covariance measurements and the storage of ©@ underlying air.
This approach, however, seems unsatisfactory as numerous investigators are reporting that it may be
causing nocturnal respiration flux densities to be underestimated.

A new theory was recently published by Lee (1988ricultural and Forest Meteorolog91: 39—
50) for assessing net ecosystem-atmospherg €©hange §.) over non-ideal terrain. It includes
a vertical advection term. We apply this equation over a temperate broadleaved forest growing in
undulating terrain. Inclusion of the vertical advection term yields hourly, daily and annual sums of
net ecosystem Cfexchange that are more ecologically correct during the growing season. During
the winter dormant period, on the other hand, corrected fiQ density measurements of an actively
respiring forest were near zero. This observation is unrealistic compared to chamber measurements
and model calculations. Only during midday, when the atmosphere is well-mixed, do measurements
of N, match estimates based on model calculations and chamber measurements. On an annual basis,
sums of N, without the advection correction were 40% too large, as compared with computations
derived from a validated and process-based model. With the inclusion of the advection correction
term, we observe convergence between measured and calculated vaNiesrohourly, daily and
yearly time scales. We cannot, however, conclude that inclusion of a one-dimensional, vertical ad-
vection term into the continuity equation is sufficient for evaluating @@change over tall forests in
complex terrain. There is an indication that the neglected te(ft,/dx), is non-zero and that CO
may be leaking from the sides of the control volume during the winter. In this circumstance, forest
floor COp efflux densities exceed effluxes measured above the canopy.

Keywords: AmeriFlux, FLUXNET, Carbon balance, Micrometeorology, Deciduous forest, Eddy
covariance, Ecophysiology.
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1. Introduction

Information on carbon dioxide fluxes between land and the atmosphere is needed
to quantify and understand how the atmospheric composition gf@fes in time

and in space. Knowing where terrestrial carbon sources and sinks are, how strong
they may be, how they will respond to environmental perturbations and how they
vary diurnally, seasonally and inter-annually are among the questions that remain
unresolved within the carbon cycle research community (Heimann et al., 1986; Fan
et al., 1998; Canadell et al., 2000).

Micrometeorological flux measurement methods have the potential for measur-
ing, directly, the net flux density of carbon dioxide between patches of landscape
and the atmosphere. The horizontal length scale of these measurements ranges
from 100 m to several kilometres. Temporally, micrometeorological flux measure-
ments can encompass time intervals ranging from hours to days through seasons
and years.

The acquisition of measurement and £@ux data over extended periods
is a relatively recent phenomenon. Until the work of Wofsy et al. (1993) and
Vermetten et al. (1994), no one ventured to measure eddy fluxes of carbon di-
oxide over the course of a year. Yet, this is the relevant time scale for many
ecosystem and biogeochemical cycling processes. In the meantime, a global
network of long-term flux measurements sites, called FLUXNET, has been pro-
posed (Baldocchi et al., 1996), and is now operating, with over 80 flux towers
worldwide (ttp://www-eosdis.ornl.gov/FLUXNETA majority of the sites are
supported through the auspices of the EUROFLUX (Tenhunen et al., 1998;
http://gaia.agraria.unitus.it/eflux/euro.htinl AmeriFlux (Hollinger and Wofsy,
1997;http://cdiac.esd.ornl.gov/programs/amerifluahd MEDEFLU regional net-
works.

Early reports from the network tower sites are indicating that previously
disturbed forests, growing in temperate zones, are taking up between 200 and
600 g C n12 year! from the atmosphere (Wofsy et al., 1993; Valentini et al.,
1996; Greco and Baldocchi, 1996; Goulden et al., 1996a,b). Investigators working
in boreal zones report relatively large rates of uptake for deciduous forests (Black
et al., 1996), but small ecosystem carbon gains (Jarvis et al., 1997; Goulden et al.,
1998) or losses (Lindroth et al., 1998) are being reported over conifer stands.

As long-term carbon dioxide flux data accumulate, the accuracy of some
published sums of annual GGxchange are becoming subject to question for
several fundamental reasons. First, native vegetation is seldom found in flat ter-
rain. Consequently, many long-term flux measurement sites do not meet classical
micrometeorological criteria that ensure the development of a constant flux layer
(Kaimal and Finnigan, 1994; Foken and Wichura, 1995). The most severe sites
are situated over tall forests in rolling terrain. Second, a cohort of carbon flux
researchers suspect that they may be under-evaluating nightti;8u2€&s (Black
etal., 1996; Lee et al., 1997; Goulden et al., 1996a,b; Baldocchi, 1997; Lavigne et
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al., 1997; Lindroth et al., 1998; Chen et al., 1999; Aubinet et al., 2000). Potential
explanations include insufficient turbulent mixing, incorrect measurement of the
storage term of C@in the air space and soil and the drainage of,GDt of

the canopy volume at night. All of these factors will cause a systematic bias of
nighttime CQ loss (see Moncrieff et al., 1996).

When integrated over 24 hours or on a yearly interval, this nocturnal bias error
has the potential to amplify. A small night time bias error ofifnol m=2 s™1,
summed for 12-hour nights over one year, is equivalent to 189 g&year?. Er-
rors of this magnitude can result in unrealistic annual sums that cannot be supported
by independent biological measurements of tree and plant growth.

Numerous instrument, software, and model inter-comparison studies lead us to
conclude that this nocturnal G@fflux measurement problem is associated with
atmospheric conditions and the interpretation of eddy fluxes, rather than measure-
ment errors. For example, nocturnal measurements of canopy respiration (using the
same instruments and processing software) over short crops growing over flat ter-
rain in windy environments do not underestimate model calculations of nocturnal
respiration while those over tall forests do (Baldocchi and Meyers, 1998).

At present, several teams of investigators are applying an empirical correction to
compensate for the underestimate of nighttime flux measurements. This correction
is based on Coflux density measurements obtained during windy periods or by
replacing data with a temperature-dependent respiration function (Lindroth et al.,
1998; Black et al., 1996; Goulden et al., 1996a). Most researchers presume that
data within windy periods represent conditions when the storage and drainage of
CO, is minimal (Aubinet et al., 2000).

Ideally, one would prefer to treat this problem on a physical basis rather than
with an empirical correction. The regression correction, currently in vogue, suffers
from autocorrelation. The standard deviation of vertical wind velocity fluctuations
(o) is associated with the dependent (friction velocity) and the independent
variables (CQ flux density, F, = p,w0OcO = ry 0,0 ruc is the w-CO, cor-
relation coefficient and. is the standard deviation in GOnixing ratio). Most
teams also report very low coefficients of determinatiot) betweenF, andu,
(Aubinet et al., 2000). Rarely does explain more than 50% of the variance in
F.. Furthermore, there is no guarantee that empirical corrections developed at one
site will be valid at another (Aubinet et al., 2000). For example, the need to correct
nocturnal fluxes and the magnitude of this correction will differ if one’s site is
on convex topography, where air will drain away, or concave topography, where
cold can air accumulate. For sites on ridges, the nocturnal build up eft€@s
to be modest as some G@rains away. If some respired G@ever reaches an
eddy covariance measurement system, soil/root respiration will be underestimated
if such drainage is not accounted for. For sites in concave topography, or bowils,
nocturnal CQ levels can become quite elevated as air drains into that region. The
horizontal inflow of CQ into a restricted volume will cause an eddy covariance
measurement to overestimate the £&fflux from the underlying soil.
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At our site, near Oak Ridge, Tennessee in the U.S.A. we have been suspecting
the accuracy of our nighttime GOlux density measurements during the dormant
and growing seasons, when the thermal stratification of the atmosphere is stable
and turbulent mixing is intermittent (Baldocchi, 1997). Several observations fuel
this suspicion. During the winter when the forest is leafless, dormant and respir-
ing, we often observe downward-directed eddy fluxes of carbon dioxide. This
result is contrary to respiration measurements that have been made at our site
with chambers. These data suggest a wintertime carbon dioxide efflux between
0.5 and 1umol m—2 s~* (Hanson et al., 1993; Chambers, 1998) that is constant
over the course of a day. Spurious eddy flux observations occur most often when
the weather is cold and during the night, early morning and early evening peri-
ods. On the other hand, better agreement between the direction and magnitude
of micrometeorological and chamber derived fluxes occurs during midday when
the planetary boundary layer is deep and turbulent mixing is robust. During the
growing season, nighttime GClux measurements significantly underestimate
rates of canopy respiration derived from a model that computes accurate fluxes
of photosynthesis and respiration during the day (Baldocchi, 1997; Baldocchi and
Meyers, 1998). The consequence of these biases is significant. Simple sums of
eddy covariance measurements yield a net annual carbon sink strength exceeding
900 g C nT? year. Fluxes of this magnitude are not defensible based on biometry
measurements (Edwards et al., 1989; Paul Hanson, personal communication) and
they exceed model calculations of annual net ecosystem carbon exchange by almost
a factor of two.

If we are to produce defensible measurements of net annual carbon fluxes for the
research community (e.g., Fan et al., 1998; Canadell et al., 2000), we must develop
and implement a physically based theory that describes net exchange of material
between the atmosphere and biosphere. Lee (1998) described a new method that
accounts for the effect of advection on the evaluation of net atmosphere/biosphere
trace gas exchange. In this paper, we evaluate Lee’s theory by estimating daily
and annual carbon fluxes over a 26-m tall temperate, deciduous, broadleaved forest
growing in non-ideal terrain.

2. Theory

A client of mass and energy flux information wants to know how much material is
being transferred across the land/air interface and what proportions of this material
transfer are associated with the soil and with the vegetation. Atmospheric methods
offer a way of accessing this ‘net ecosystem exchange’. Such methods exploit the
natural mixing of turbulent flow to sidestep the severe problems that spatial variab-
ility poses for other methods such as chambers or biomass sampling. Atmospheric
methods, however, have their own limitations. It is prudent to be aware of them so
that the proper confidence can be assigned to measurements in various situations.
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All atmospheric flux measurement approaches begin with the equation for the
conservation of a scalar in air. For a point in space, the total time derivative for a
change in scalar concentration with respect to time is composed of the local time
derivative and the lateral advection of material through a conceptual cube. These
terms are balanced by turbulent flux divergences across the faces of a conceptual
cube and the amount of material that may be created or destroyed within the cube
by biological and chemical processes,

do. _de __ aE+_aE +_8u_,~
= a—— = Pa | — u— CcC—
dr p dr p ot ox; ox;
u.c
= ~Pa—y — + Sp(t.x) + Sen (1, ). (1)

Written in this form,c is the mixing ratio of the scalar ang, is the mean density
of dry air. Overbars denote ensemble or time averaged mean quantities and primes
departures from the mean so that

c=c+c, u=u; +u.

Variables are expressed in a right-handed coordinate system x, y, z with
corresponding velocity components= u, v, w; x1 (0or x) is in the mean stream-
wise direction,xs (or z) in the vertical or surface normal direction amgl (or y)
in the cross-stream, lateral directiafy and S, are the source strengths ©flue
to biology and chemical reactions respectively. Henceforth in this paper, we will
ignore S.,. A more formal derivation of Equation (1) would start with a budget
equation of CQ@ density p. = p,c, moles nT3) rather than mole fraction, which
implicitly assumes that air density is constant. For more information on this topic,
the reader is referred to the works of Webb et al. (1980) and Paw U et al. (2000).
For the simplest case, one assumes steady state conditions at a point, and hori-
zontal homogeneity (no horizontal gradients). On this basis Equation (1) reduces
to

dw'c’
0z

In the layer between canopy top (heightand the measurement height)((a layer
whereSz(z) equals zero) Equation (2) reduces to the classical constant flux layer
relationship,dw’c’/dz = 0.

Integrating Equation (2) from the ground to heightyields an equation show-
ing that the eddy covariance between vertical velocity and scalar concentration
fluctuations equals the net flux of material in and out of the underlying soil and
vegetation, as delimited by the canopy heidht,

0=-70, + S5(2). (2

h
Paw'c’(z,) = paw’c’(0) —i—/ Sp(z) dz. 3
0
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For the case of C@exchange, this relation presumes to measure net ecosystem-
atmosphere exchange of €@N,), the balance between photosynthesis and
autotrophic and heterotrophic respiration. The equation is derived from the per-
spective of the atmosphere, so positive flux densities are directed upward towards
the atmosphere and negative ones are directed downward towards the ecosystem.
We have writterw’c’(0) as shorthand for the flux density ofat the soil surface.

This efflux represents soil-root respiration. We ignore complications caused by
the local spatial variation of quantities in the plant-air space, which requires us
to volume average quantities to obtain meaningful within-canopy variables.

To use any of these equations in practice we must make the ergodic assumption.
In other words, we replace the ensemble average by a time average taken over
some periodl’. We desire a value df that is much longer than the period of any
turbulent motion that contributes to the eddy flux at the measurement height. Un-
fortunately, this is not always possible and puts an unavoidable upper limit on the
accuracy with which we can close budgets like Equation (1) (Kaimal and Finnigan,
1994). We shall now consider the consequences of relaxing these restrictions to a
degree that reflects the reality of our experimental situation.

When the thermal stratification of the atmosphere is stable or turbulent mixing is
weak, material diffusing from leaves and the soil may not reach the reference height
z, in a time that is small compared to the averaging tifhehereby violating the
assumption of steady state. Under such conditions the storage term becomes non-
Zero, so it must be added to the eddy covariance measurement to balance material
flowing into and out of the soil and vegetation,

Zr 9¢ h
Pa w'c’(zr) +E/ 8—(; dz =, w'c’(0) +/ Sp(z) dz. (4)
0 0

While the storage term is small over short crops, it is an important quantity over
taller forests. With respect to GQthe storage term value is greatest around sunrise
and sunset when there is a transition between respiration and photosynthesis and
between the stable nocturnal boundary layer and daytime convective turbulence
(Goulden et al., 1996b). We also note that Equation (4) provides the theoretical
framework that is being used by a majority of the FLUXNET community (Aubinet
et al., 2000; Wofsy et al., 1993; Black et al., 1996; Greco and Baldocchi, 1996).
Advection of mass and energy can occur in circumstances when the underlying
surface is heterogeneous. The most prominent situation involves flow across the
border of surfaces with different roughness or different source/sink strengths. Ex-
amples of cases where advection of mass and energy is notable include transitions
between forests and crops, vegetation and lakes, desert and irrigated crops (Rao
et al., 1974; Bink, 1996; Sun et al., 1997). The advection of mass and energy is
also ubiquitous in complex terrain, where drainage flows can occur (Kaimal and
Finnigan, 1994; Raupach and Finnigan, 1997). Pioneering micrometeorological
studies by Mordukhovich and Tsvang (1966), for instance, showed that sloping
terrain causes horizontal homogeneities and flux divergence. We stress that the
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constant flux layer fails to exist when advection occurs (see Rao et al., 1974; Bink,
1996; Raupach and Finnigan, 1997). So flux covariance measurements made at a
single point are invalid measures of the biological activity of the underlying canopy.

An equation defining the conservation budget in two dimensions (where the x
axis is aligned along the mean wind direction) introduces additional terms,

Pa U— +w—

_ 8E+_8E _oc _8ﬁ+_8w
ot 0x 0z ox 0z

_ [aﬁ aﬂ}
= 04| ——+ + Sp(x, z,1). 5)

0x 0z
Equation (5) is an expression of the conservation of mass at a point. To make
practical use of Equation (5) one should integrate it over a control volume whose
lower boundary consists of the interface between the air and the soil, under the
vegetation, and whose upper and lateral boundaries are fixed in the air.

Motivated by a need to circumvent this complexity, Lee (1998) re-visited the
budget equation (Equation (1)) and applied it to the case of &@hange. His
goal was to derive an equation that could be used to assess fluxes under non-
ideal conditions using conventional experimental instrumentation, mounted on a
solitary tower. To do so, he assumed advection was non-negligible in the vertical
and longitudinal directions.

The convergence and divergence of streamlines, as wind flows over hills, will
cause individual terms associated wiitbu;/0x;) to be non-zero (Kaimal and
Finnigan, 1994). Lee (1998) invoked the continuity equatiary §x+0w/dz = 0)
to evaluate the horizontal gradient foin terms of the vertical gradient @f,

ST (6)

X 0z Zr

The term,wy,, is defined as a mean vertical velocity measured at the reference
height,z,. This mean vertical velocity should not be confused with the raw vertical
velocity output of a sonic anemometer. On flat terrain, non-zero values ofcur
on the time scale of hours. Such non-zero values arises from convection, synoptic
scale subsidence or local circulating flows due to thermal effects (Lee, 1998). Over
complex terrain, drainage flows will caugg to be non-zero, too.

The other assumptions made by Lee (1998) include

ou'c’
0x

=0, (7)

i— =0, 8
L (8)
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ac ow  Jdwc
W—+c— = —. 9
v 0z e 0z 0z ©
Following the assumptions made by Lee (1998), an expression for net ecosystem
exchange of CQ (N,), the flux density of C@ exchange between the biosphere
and atmosphere, is derived. It equals the sum of the eddy covariance, measured at
a reference height, the storage term and a parameterized ‘advection’ term,

h
N, = mw’c’(0)+/ Sy, 1) dz
0

Zr 8_ ir 8_
— |:w’c’(zr) + / %€ oz + / e dz} . (10)
0 ot 0 0z
Assessing the terms on the right-hand side of Equation (10) yields
== - dc .
Ne = La |:w’c’(zr) +/ E dZ + wr(cr - <C>)j| ) (ll)
0
where

r

1 r
w, =w(z,) and {c¢) = —/ ¢(z) dz.
0

The mean, vertical velocity at the reference heigit)(is the difference
between two other vertical velocities,

The vertical velocity, denote®, is the temporally averaged, vertical velocity,
which is measured over a 30-minute interval with a sonic anemometer. The other
vertical velocity {v) is a function of wind direction (hence, topography) and
instrument orientation and bias offsets attributed to the tower and anemometer
(Figure 1).

Normalized vertical bias velocityu() is a quasi-sinusoidal function of wind
direction. In principle this behaviour results because vertical velocity is positive
when air flows up the hill, it is negative when it flows down the slope and is zero
when wind is aligned across the slope (Rannik, 1998). At this complex site, the
majority of data come from the southwest and northeast quadrants. From these
quadrants the rotation angle is typically less than 10 degrees, which is not too
severe to cause flow separation and to shed wake vortices. The other feature to
be noted in Figure 1 is how the data scatter along the regression line. This scatter
denotes the functional behaviour ©f. These deviations are presumed to be due
to drainage flow or localized convection (Avissar and Pielke, 1989; Lee, 1998).
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Figure 1. The relation between the ratio of verticab) to horizontal wind speedl{) and wind
direction. These data were obtained over a temperate broadleaved forest, growing on rolling terrain.
The data were obtained during the period between days 171 and 253, 1998.

Ideally, we wish to rotate the coordinate system of the sonic anemometer so
that the mean wind velocity is oriented along with the mean streamline flowing
over the landscape. In this new coordinate system flux covariances are orthogonal
to the mean streamlines. Over level terrain and in the absence of mesoscale circula-
tions, this condition is attained naturally, as mean vertical velocities equal zero and
are independent of wind direction. Over rolling terrain or under conditions where
mesoscale circulations persist, this ideal behaviour is not expected or observed.

Coordinate rotation of scalar-velocity covariances were performed by mathem-
atically rotatingw andv to zero (rather than rotatin@ to zero, which has been
done in the past) (Wesely, 1970; Baldocchi et al., 1988). In practice, we found that
rotating w to zero, rather than rotating to zero, may be academic. Calculations
showed that it had little impact on our eddy covariance calculations. Rofatiog
zero, rather tham, reducedw’c’ by only 4%,w’'T’ by 2.8% andw’q’ by less than
1%.

3. Materials and Methods

3.1. STE CHARACTERISTICS

The experimental field site is located on the United States Department of Energy
reservation near Oak Ridge, Tennesse€3330" N; 84°1715" W; 335 m above
mean sea level). A topographical map of the site is presented in Figure 2. The met-
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Walker Branch Watershed,
Oak Ridge, TN
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Figure 2. A topographic map of the Walker Branch Watershed field site, near Oak Ridge,
TN. The data were obtained from the U.S. Geological Survey's worldwide web site,
http://edcwww.cr.usgs.gov/glis/hyper/guide

eorological tower is on a spur ridge, which slopes about 3% to the west-southwest,
a direction from which the wind predominantly flows (see Figure 3). The vertical
difference between ridge valley altitude within a two kilometre radius of the tower
is on the order of sixty metres.

Vegetation at the site consists of mixed-species, broad-leaved forest, growing
in the eastern North American deciduous forest biome. The predominant species
in the forest stand are oak(ercus alba L., Q. prinus ),.hickory (Carya ovata
(Mill.) K. Koch), maple Acer rubrum L), tulip poplar Liriodendron tulipifera L)
and loblolly pine Pinus taeda L). The forest has been growing since agricultural
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I wind direction frequency
wind speed (m s™)

300

Wind Direction

Figure 3.Histogram of wind frequency and wind velocity (Mm% according to wind direction class.
The data were obtained during 1997 over a broadleaved forest near Oak Ridge, TN.

abandonment in 1940. The mean canopy height was about 26 m. The peak leaf
area index of the canopy typically occurs by day 140 and reaches about 6.0. Leaf
nitrogen content is about 1.8%. The soil is classified as a Fullerton series, Typic
Paleudult, otherwise described as an infertile cherty silt-loam. Additional details
on the site are reported in Hutchison and Baldocchi (1989).

3.2. MEASUREMENTS INSTRUMENTATION AND CALCULATIONS

A set of micrometeorological instruments was supported 36.9 m above the ground
(10 m over the forest) on a walk-up scaffold tower. Wind velocity and virtual

temperature fluctuations were measured with a three-dimensional sonic anemo-
meter (model SWS-211/3K, Applied Technology, Boulder, CO). Carbon dioxide

and water vapour fluctuations were measured with an open-path, infrared absorp-
tion gas analyzer (Auble and Meyers, 1992). A second set of flux measurement
instrumentation, identical to the types used at 36 m, was implemented 2 m above
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the forest floor, to obtain an estimate of forest floor respiration (see Baldocchi and
Meyers, 1991).

Micrometeorological data were sampled and digitized ten times per second. In-
house software was used to process the measurements. The software computed
covariances between velocity and scalar fluctuations over half-hour intervals. Tur-
bulent fluctuations were calculated from the difference between instantaneous and
mean guantities. Mean velocity and scalar values were determined, in real-time,
using a digital recursive filter. The digital filter algorithm employed a 400 s time
constant. Extensive tests have shown that flux covariances computed with this
time constant yield values that agree within 2% of covariances computed with
conventional Reynolds’ averaging (also see McMillen, 1988).

The fast response Cfivater vapour sensor was calibrated against gas stand-
ards. The calibration standards for £@ere traceable to those prepared by
NOAA's Climate Monitoring and Diagnostic Laboratory. The output of the water
vapour channel was referenced to a dew point hygrometer. Corrections for density
fluctuations to C@ and water vapour fluctuations were applied to the scalar cov-
ariances that were measured with the open path sensor (Webb et al., 1980; Paw U
et al., 2000).

The CQ storage term was estimated, by finite difference, with a @@-
file measurement system. An automatically-controlled, solenoid sampling system
directed air into an infrared gas analyzer (model LI 6262, LiCor Inc., Lincoln,
Nebraska). Air was sampled from four levels above and within the forest (36, 18,
10, 0.75 m). Air from each level flowed through the analyzer for 30 seconds and
data were sampled during the last 20 seconds of sampling. This scheme allowed
a direct measurement of the profile every 120 s. The gas measurement system
was automatically calibrated each day at midnight by passing gases of known
concentration through the analyzer.

The CANOAK model was used to diagnose and interpret the field measure-
ments with an ecophysiological perspective. The CANOAK model is a process-
based and coupled micrometeorological and ecophysiological model, for comput-
ing the canopy microclimate and mass and energy exchange between the forest and
the atmosphere. The model has been thoroughly tested and described elsewhere
(Baldocchi, 1997; Baldocchi and Meyers, 1998).

4. Results

Hour by hour measurements of canopy/atmospherg éxchange over the course

of a year (1997) are presented in Figure 4. These data were evaluated as the cov-
ariance between vertical velocity and €@ole density (Equation (3)). Figure 4
documents why we have been suspecting the interpretation efflGX>densities

at our topographically-challenged forest site, as measured with the classical eddy
covariance method. Numerous measurements of ‘net photosynthesis’ were recor-
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ded (before day 100 and after day 300) when the forest was dormant, leafless,
and respiring. Despite the nonsensical direction of net ecosystem carbon exchange
during the winter, many of these eddy covariance measurements may have been
accurate. From a statistical sampling perspective, positive and negative values must
be recorded when the net flux is near zero, as is expected when the soil and air are
cold and below freezing point.

Observations obtained during the growing season (days 100 to 300) provide
another reason for suspecting classical eddy covariance measurements. A majority
of nighttime measurements of G@&xchange were lower during the growing season
than winter-time respiration rates, when temperature was ove&C 16wer.

If we evaluate net ecosystem g@@xchange, in terms of Equation (4), the sum
of the eddy covariance and storage terms, we observe greater values of nocturnal
respiration during the summertime (Figure 5). However, many periods with down-
ward directed fluxes, during the dormant period, remain in the data set. At this
point we address whether the addition of the advection correction term, advocated
by Lee (1998), can remedy our results.

The advective mass flux density term (the third term on the right-hand side
of Equation (11)) is the producty, (¢, — (c)). The seasonal variation is shown
in Figure 6. The majority of values are confined withi20 xmol m=2 s71. The
breadth of the data scatter, however, varies with season. The peak-to-peak variation
is rather narrow during the dormant period when,Gffadients are weak and the
variation is broad in the summer, when the vertical,@Eadient is strong.

In contrast, no seasonality in the hourly variatiorugfis observed (Figure 7).

The values of the non-local vertical velocity,() are symmetric about zero and
most of the values are confined within the rangetdd.25 m s. Over the course
of the yearw, sums to nearly zero.

The seasonal pattern of net ecosystem, @dchange ¥.), as evaluated with
Equation (11), is shown in Figure 8. More substantial rates of nocturnal respiration
are estimated during the growing season, with the application of this equation. On
the other hand, the data scatter is enhanced during the dormant period, due to an
additional source of experimental measurement error (the €@@cencentration
gradient and the vertical drift velocity). And, we have not eliminated the downward
directed fluxes of carbon over the dormant forest stand. In the following discussion,
we dissect the information in Figure 8 to better understand when Equation (11) may
or may not increase the accuracy of net ecosystem carbon exchange.

The mean diurnal pattern of bin-averaged measuremems @dring the grow-
ing season is presented in Figure 9 f¢r(Equation (11)). Also shown in the figure
are the mean diurnal courses of the eddy flux covariafgg (Equation (3)), the
eddy covariance plus the storage term (Equation (4)) and a computatidp of
that was derived from the CANOAK model (Baldocchi, 1997). Simply measur-
ing N, as a function of the eddy covariance’¢’) yields a metric that does not
detect reasonable and expected rates of nocturnal respiration, as based on model
calculations. Adding the carbon flux attributed to the Qbrage term does not
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Figure 4. The seasonal pattern of net canopy £&xchange, as computed with the eddy covariance relationship, Equation (3). These data were obtained

over a temperate broadleaved forest during 1997.
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Figure 7.The hourly variation in values of the vertical drift veloci@g{) over the course of a year.

bring canopy respiration into agreement with model calculations either (measured:
—5.96 vs computed=5.09 g C nt? day1). Inclusion of the storage flux term only

adds 0.12 g C ? day ! to the total flux. Treating all terms associated with eddy
covariance, storage and advection, however, produces estimates of nocturnal res-
piration that match model calculations with reasonable fidelity, within 5%.84
and—5.09 g C n2 day?, respectively).

Though our logic may seem reversed by testing a measurement theory with a
model, it seems justified, in this case. First, the low accuracy of near-zero nocturnal
eddy covariance measurements, based on Equation (4), is well known (Lee, 1998;
Lavigne et al., 1997), so it is not a reliable standard. Second, we are confident
about the performance of the model calculations because past tests show the model
agrees well with daytime C£ the sum of photosynthesis and respiration (Bal-
docchi, 1997). Accurate estimates of daytime respiration should be an indicator of
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Figure 8.The seasonal pattern of net canopy£2change, as computed by the sum of the eddy covariance, storage and vertical advection terms, Equation

(11).
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accurate nocturnal calculations of respiration. The model also predicts water and
energy flux density measurements well. Third, the photosynthesis and respiration
components of the CANOAK model were parameterized with information from
our field site, so its calculations are constrained by local data (Hanson et al., 1993;
Harley and Baldocchi, 1995; Wilson et al., 2000). As for night periods, we are
inclined to trust the model as a standard, as eddy covariance readings of near zero
are not defensible. Canopy respiration should scale as the sum of soil respiration
and the product of leaf area index and leaf respiration (Lavigne et al., 1997). Based
on this principle, nighttime, growing season, canopy efflux values should exceed
5umolm2?s,

The mean diurnal patterns of the advection and storage terms, representative
of the growing season, are very prominent (Figure 10). During dark periods, both
terms are positive, representing a loss of carbon from the biosphere and a gain
by the atmosphere. In the morning, the storage term exhibits a transition from
storing to losing C@. Furthermore, this transition occurs about two hours before
the advection term changes from importing to exporting material in and out of the
vertical volume of air under study. During midday, the advection term oscillates
about zero, while the storage term decreases towards zero after midmorning. When
summed over a day, the storage term is nearly zero, 0.18 ?@ay_. In contrast,
the daily integral of the advection term is 1.19 g Cqwalay 2.

A different set of inter-relationships occurs between measured and calculated
values ofN, during the dormant period (Figure 11). Here, we compare estimates of
N, based on Equations (4) and (11), the CANOAK model and measurements made
at the forest floor with an eddy covariance measurement system. The CANOAK
model predicts thaiV, is constant and positive across the day since the major
driver, soil and air temperature, is nearly constant. All three measures of net carbon
exchange, on the other hand, show a strong and parabolic diurnal pattern. Only
around midday do measurements and model calculations match. Summed over the
course of the day the model predicts that 1.75 g € mhay* are lost from the
forest system. In comparison, the forest floor system measures 0.73 ¢ @ay1*
and the tower measures 0.34 g Ciday . These measurements imply horizontal
advection is removing approximately half of the carbon dioxide flux between 2 and
37 m, ignoring storage, which should sum to zero over 24 hours. Therefore, the
model calculations and these data suggest thati€advecting (‘leaking’) out the
side of the control volume under the tower and is not crossing the plane where the
eddy covariance instrumentation is located.

During the dormant period, the canopy storage and vertical advection terms
are small & 1 wmol m—2 s71; Figure 12) because the gradients of Qf@tween
the forest floor and tower top are small. So inclusion of these two terms does not
remedy wintertime C@effluxes as well as during the growing season. The impact
of vertical advection and storage on the interpretation of the below canopy eddy
fluxes is also expected to be small since the,Gtdrage in the thin layer is small
and the mean advective vertical velocity approaches zero at the ground.
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TABLE |

The annual sums of measured values were constructed by a combination of field measurements
and synthetic data, which was used to fill gaps during periods when the sensors were wet, out of
range or conditions did not comply with limits set by turbulence similarity theory. The gap filling
routines were derived from the empirical field measurements and considered the effects of light,
temperature and time of year. About 50% of the data record was corrected. The growing season
was assumed to range between days 90 and 310.

Eddy covariance + Eddy covariance + CANOAK model

storagé storage + advectidn
N. (g C m 2 year1) —837 —660 —585
Ne, growing season, day —1067 —974 —1210
N,, growing season, night 206 285 381
N, dormant season, day -12 0.5 117
N,, dormant season, night 36 27.5 126

The absolute differences between the measured and computed carbon effluxes,
though rather small (on the order ofimol m—2 s71), are very consequential with
respect to annual carbon budgets. Table | shows than annual suvp<aii range
between—844 and—662 g C nT? yeart, whether one uses Equations (3), (4) or
(11). In comparison)N, based on the CANOAK model is585 g C mt? year?, a
value that is most closely approximated by Equation (11).

5. Discussion

Though Lee’s advection correction (Equation (11)) improves upon our interpreta-
tion of N,, as compared to a process based model, we cannot conclude that it is
the definitive correction term for interpreting eddy covariance measurements over
tall forests on complex terrain. Spatial variation in the mean flow and the scalar
mixing ratio field, as a result of topography and changes in surface roughness
and biospheric source and sink strengths, produce spatial variation in the mean
turbulent fluxes that may not be accommodated by this one-dimensional relation.
With regard to flow over a low hill, there are four mechanisms that can induce
advective fluxes of scalars, such asDd water vapour (Raupach and Finnigan,
1997). One, horizontal gradients in carbon dioxide source-sink strengths will be
generated along the direction of the wind passage by spatial variations in light,
soil moisture, soil texture, leaf area and species composition. The radiant energy
flux density to the soil and canopy is a function of the angle between the solar
beam and the normal to an inclined surface. Radiation gradients along a hill impose
direct spatial gradients on the surface energy balance, stomatal conductance, pho-
tosynthesis and respiration. Differential radiation interception along a hill can also
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generate streamwise differences in thermal stratification and atmospheric stability.
On the longer term (season to years), the soil texture will vary from the top to
the bottom of a hill, as will vegetation water use. This combination of interac-
tions will affect the stature of vegetation, its physiological functioning and species
composition.

Two, any change in surface roughness along the longitudinal axis of a hill will
alter the surface stress, friction velocity,f and the eddy exchange coefficient
(K,). This alteration, in turn, feeds the scalar flux boundary condition, as it is
proportional to the product of the local eddy exchange coefficient and the scalar
mixing ratio gradient, normal to the hill.

Three, as spatial variations in the turbulent stresses develop, in response to
changes in the mean windfield, they will generate spatial variation in the eddy
fluxes of the scalar. This can be illustrated by considering the production terms
of the relevant eddy flux rate equations. These terms typically take the form of
the product of turbulent stresses and mean concentration gradigaifs¢/ox;
(Kaimal and Finnigan, 1994).

Four, changes in the mean scalar concentration field develop as lines of equal
concentration (which were parallel to the ground in the one-dimensional case) are
convected along the converging and diverging streamlines of the two-dimensional
flowfield. This two-dimensional structure in mean concentration also feeds into the
production terms of the eddy flux rate equations, which were noted in situation
three.

Above the canopy, in steady flow conditions, changes in the eddy flux diver-
gence, caused by the identified mechanisms, must be balanced by the advective
flux divergence (e.g., Bink, 1996),

ac ac ow'c’  du'c
e li—+w—|=—-p, ) 13
p[”ax+wa] p|:8z+8xj| (13)

Lee (1998) argued, on scaling grounds, that the horizontal advection term
udc/dx can be neglected relative to the vertical termpc/dz and the ho-
rizontal component of eddy flux divergence neglected relative to the vertical,
dw'c’/dz > du'c’/dx. This argument is presumed to hold, in two-dimensional
flowfields, when the horizontal scale of the flow is much greater than the measur-
ing heightz, (as in synoptic weather systems). The second of these assumptions
(dw’c’/dz > du’c’/dx) is impossible to assess precisely without measurements or
a model of the flow and concentration field in any particular circumstance. But
it seems likely to be satisfied in many cases. The small perturbation model of
Raupach et al. (1992) for flow over a low hill makes this assumption on consistent
scaling grounds.

To first order, it is possible to deduce whether or not advection is significant at
a given site by measuring flux divergence directly (Bink, 1996). Eddy covariance
measurements were made at multiple heights above the deciduous forest to exam-
ine how big the turbulence flux divergence term could be. Our data suggest that the
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turbulent flux divergence aob’u’ andw’T’ were close to zero over a 7-m distance
(Figure 13). Though the terrain is complex at our site, winds tend to run along the
ridge, causing the streamline deformation and flux divergence of momentum and
heat transfer to be relatively small. While we may be able to conclude that at a
point

_ _BE+_BE ~0
Pa Max waz e

neglectingu dc/dx over w dc/dz has less or no justification, except in special
circumstances. We can see this by considering two typical flow fields.

5.1. TOPOGRAPHICALLY AND DIABATICALLY FORCED FLOWS WITH A
BACKGROUND WIND.

Topographically and diabatically forced flows possess a background wind and wind
motion that is associated with the passage of convective cells of the planetary
boundary layer. The two advection terms involve products of the total velocity
field, which now consists of the background plus perturbation, and the total con-
centration gradient. The concentration gradient responds to the changes in eddy
flux and to advection by the disturbed windfield in a complex way. We listed earlier
the various contributions to these changes. To decide how the two components of
advective flux divergence are related at an arbitrary measurement point, we require
measurements or a model of the particular flow field in question. We can investigate
the question conceptually by enlisting the model of Raupach et al. (1992) of scalar
flux and concentration over a low hill. This model can represent the effect of a
small perturbation caused by a hill or a weak manifestation of the diabatic effects
we have already mentioned.

The model is linear and can be written from the conservation equation as

Jcy d¢o ow’'c’
00 |02 + w1 =2 | = —p, + Sp(x, 2, 1), (14)
0x 0z 0z

where subscript 0 denotes the undisturbed upwind variable and subscript 1 the
perturbation caused by the hill.

A fundamental feature of the linear model is the division of the flow domain
into two parts. An inner region of depthexists close to the surface, where both
mean momentum and scalar fields are strongly affected by perturbations to the
turbulent fluxes. The outer region contains mean air flow that responds inviscidly
to the hill. Changes to the scalar field are caused entirely by advection along the
distorted mean flow streamlines. At our field site the depth of the inner region is
estimated to be between 25 and 35 m above the surface.

Considering the horizontal advection term first, the linear theory computes
¢1, the perturbation to the concentration field, as the sum of four components.
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Figure 13.Comparison between turbulent eddy fluxes at two heights within the surface boundary
layer of a 26 m tall, temperate broadleaf forest. The lowest level was at 29 m and the highest
level was at 36 m. (a) Momentum shear str@ss:’), 0.981, zero-intercept+0.0068,r2: 0.867. (b)

The covariance between vertical velocity and temperature fluctuations, slope: 1.014, zero-intercept:
0.0002,-2: 0.962.
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Each component is the result of one of the four mechanisms we listed earlier as
contributing to the change in eddy flux. These component are: streamline conver-
gence/divergence, changes in turbulent stresses, changes in surface shear stress and
changes in surface scalar flux.

As we traverse the hill, contributions @ from the first three components
vary in phase with each other. Beloyv = [ the effect of surface shear stress
dominates, theoretically. The influences @nof stress changes and streamline
convergence/divergence are smaller in magnitude and opposing each other.

Above z = [, only the streamline convergence/divergence effect can be sig-
nificant. The fourth contribution ta;, that from changes in surface scalar flux,
depends entirely upon how this changes as we pass over the hill. It need not be in
phase with the other contributions @. For evaporation and sensible heat, it will
respond to the interaction of slope angle and sun elevation and to the difference of
water availability between hilltop and valley.

Moving to the vertical advection terrm; dcg/dz, linearized theory shows that
over the hill, w7 varies in phase with the first three contributionsufdc,/dx.
Furthermore, within the assumptions of linearity, contributionggtéc;/0x from
changes in turbulent stresses and changes in surface shear stress do not depend
directly on the sign ofdcg/dz. A change of the sign of the background scalar
gradient, as occurs for example during the twice-daily switch between assimilation
and respiration dominance of the €@ux, can reverse the sign of the vertical
advection term in the inner layer with only a small effect on the horizontal one.

With these results, we are in a position to compare the relative signs and mag-
nitudes of the two advection terms. Above the inner layer, where only the effect
of streamline convergence/divergence affects the scalar perturbation, the theory
yields the simple result that the two advection terms are of opposite sign and ap-
proximately equal magnitude. In the inner layer where most of our measurements
are made, the sign of the horizontal advection t@gicy/dx is determined by
the relative strengths of the four competing influenceg;aithough with uniform
surface roughness and constant surface scalar flux it will have the same sign as the
contribution from streamline convergence/divergence but be larger in magnitude
(Raupach et al., 1992). In the inner layer, the sign and magnitude of the vertical
advection term is set by the background scalar gradient in a way that is essentially
independent of the dominant contributions to the horizontal term.

In summary, according to this simple linear model, the two contributions to
advection are almost equal and opposite in regions of the flow where changes in
turbulent flux divergence are small. Within the inner layer, where most measure-
ments are made, the two terms may be of considerably different magnitude and of
the same or opposite sign, depending on the relative contributions of the various
competing influences ofy. Clearly, when there is a large-scale background flow,
we have no grounds for using a measurementwafc/dz as a bound on total
advection at an arbitrary point in the flow and in the outer layer its inclusion will
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make budget closure worse as in reality it would be cancelled by the horizontal
term.
Data in Figure 14 provide indirect evidence that the advection tema/dx,
is non-zero. During the growing season, £&ncentration measured 36 m above
the ground varies between about 360 and 450 ppm over the course of a day in a
regular and repeatable manner. Temporal variations inr&@r the forest floor, in
contrast, are highly irregular. They can increase and decrease by 100 ppm within
a few hours, without any related change occurring at the top of the column. This
decoupling between C{Omeasured near the forest floor and the top of the tower
suggests that C{s advecting in and out of the horizontal sides of the air column.
In other words, C@moving past the forest floor system is leaking out the sides of
the vertical air column before it can cross the horizontal plain above the forest.
During the winter dormant period, the differences between @®@asured at
36 and 2 m are small and temporal variations are well correlated at the two heights
(Figure 15). Closer inspection of these data, however, reveals that many periods oc-
cur when CQ concentration at 36 m exceeds measurements near the forests floor.
This gradient is counter to what one would expect from a supposedly respiring
forest. These results indicate either plume impaction, boundary-layer entrainment
of elevated CQ@or the near surface drainage of &@own the hill.

5.2. S OW PASSAGE OF CONVECTIVE ELLS OF THE PLANETARY BOUNDARY
LAYER

If the horizontal velocity of the convection cells is small compared to the convective
velocity scalew,, then regions of updraft and downdraft will be located randomly
over the tower for time periods long compared with the timescale of the dominant

turbulent motion at tower height (whete, = [g%:-"]m, g is the acceleration

due to gravity,T, the reference temperatungé’ the turbulent heat flux ang the
convective boundary-layer depth). As pointed out by Lee (1998), the likelihood of
being in a downdraft is greater than that of being in an updraft but updrafts are
stronger than downdrafts. The horizontal velocities generated near the surface by
such motions will be of ordew,, and the distance between updraft and downdraft
regions will be, on average;. It is possible that in such situations the neglected
horizontal contributions to advection will cancel out on average and that recording
the vertical advection term in the budget in the form of Equation (11) will improve
closure but this supposition remains to be tested more thoroughly.

We can summarize the conclusions of this section by saying that in general, two-
and three-dimensional flowfields require 2D or 3D analysis frameworks. Only in
the case of a tower located at or near a stagnation streamline of an anabatic or
katabatic flow can we expect to improve budget closure by adding the vertical
advection term, the only component of advection available from a single tower.
In more general flows containing a large-scale background wind, the relationship
between vertical and horizontal advection terms is controlled by a set of competing
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influences and universal predictions about their relative sizes or even their relative
signs can only be made in regions of the flow where perturbations to the eddy
flux are negligible. In such circumstances, Equation (11) may be an incomplete
representation of mass conservation.

6. Conclusions

We have investigated the applicability of Lee’s advection correction term for meas-
uring long term CQ@ exchange over a forest on complex terrain. Inclusion of the
vertical advection term yields hourly, daily and annual sums of net ecosystem CO
exchange that are more ecologically correct, during the growing season. During
the winter dormant period, nighttime detected rates of an actively respiring forest
are near zero. Only during midday do model calculations and measurements of
N, match. On an annual basis, sumsh\afwithout the advection correction were
40% too large, as compared with model computations. We cannot conclude that
the Lee correction term is definitive for evaluating £€xchange over tall forests
in complex terrain. There is an indication that the neglected tetn,/dx, is non-
zero and that C@is leaking out of the sides of control volume (within the forest)
during the winter.

There are also practical problems with applying the Lee correction to long-
term CQ flux density data bases. The inclusion of additional terms compounds
measurement errors and increases the probability of instrument malfunction.
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