150 research outputs found

    In vivo assessment of non-dopaminergic systems in Parkinson’s disease with Positron Emission Tomography

    No full text
    Parkinson's disease (PD) is characterized by a progressive loss of nigrostriatal dopaminergic neurons. Non-dopaminergic neurotransmission is also impaired. Intraneuronal Lewy bodies, the pathological hallmark of PD, have been observed in serotoninergic, noradrenergic, and cholinergic neurons. Dysfunction of these systems could play a role in the occurrence of non-motor symptoms including fatigue. However, the extent of non-dopaminergic degeneration in PD, rates of its progression, and its contribution to the development of non-motor symptoms is unclear. First, I used 18F-dopa Positron Emission Tomography (PET), a marker of monoaminergic terminal function, to assess the involvement of dopaminergic, noradrenergic, and serotoninergic pathways in PD and in parkin-linked parkinsonism, a genetic form of PD. I found that parkin patients and PD patients have distinct patterns of monoaminergic involvement, with more widespread dysfunction in PD. In a second study, I used serial 18F-dopa PET to assess longitudinal changes in tracer uptake in brain monoaminergic structures over a 3-year period in a group of PD patients. I also assessed the relationship between striatal function decline and dysfunction in extra-striatal areas in the same patients. I found that the degeneration in extrastriatal monoaminergic structures in PD occurs independently from nigrostriatal degeneration and at a slower rate. Brain compensatory mechanisms disappear within the first years of disease. I then used 18F-dopa and 11C-DASB PET to investigate whether fatigue in PD is associated with dysfunction of dopaminergic/serotoninergic innervation. I found that PD patients with fatigue show severe loss of serotoninergic innervation in basal ganglia and limbic areas. Finally, I assessed the relationship between 18F-dopa uptake and measurements of serotonin transporter availability by 11C-DASB PET within brain serotoninergic structures and I provided evidence for the hypothesis that 18F-dopa PET can be used to evaluate the distribution and the function of serotoninergic systems in the brain of PD patients

    Recent imaging advances in the diagnosis and management of Parkinson’s disease

    Get PDF
    In this review we report novel sensitive imaging biomarkers for Parkinson’s disease (PD) and its atypical variants. Diffusion tensor imaging and transcranial brain sonography are potentially promising techniques that can differentiate typical PD from atypical variants (multiple system atrophy and progressive supranuclear palsy) and from benign tremor disorders. Non-motor symptoms, such as dementia, depression, and sleep disruption, are often more distressing to PD patients than their slowness and stiffness. Dopamine replacement treatment can also lead to complications such as dyskinesias, impulse control disorders, and psychosis. Recent positron emission tomography studies have helped to clarify the physiopathological mechanisms underlying dementia and compulsive gambling in PD and provide a rationale for therapeutic strategies

    The longitudinal progression of autonomic dysfunction in Parkinson's disease: A 7-year study

    Get PDF
    BackgroundAutonomic dysfunction, including gastrointestinal, cardiovascular, and urinary dysfunction, is often present in early Parkinson's Disease (PD). However, the knowledge of the longitudinal progression of these symptoms, and the connection between different autonomic domains, is limited. Furthermore, the relationship between the presence of autonomic symptoms in early-stage PD and olfactory dysfunction, a possible marker of central nervous system involvement, has not been fully investigated.ObjectivesWe aimed to investigate the occurrence and progression of autonomic dysfunction in recently diagnosed (< 2 years) untreated PD patients and determine any coexistence of symptoms in individual patients. We also investigated the relationship between autonomic symptoms, olfactory dysfunction, and motor impairment.MethodsData were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. Autonomic dysfunction was measured using the Scales for Outcomes in Parkinson's Disease (SCOPA-AUT). Symptom frequency and mean scores over 7 years were determined. The simultaneous occurrence of different autonomic symptoms was also examined. Finally, the relationships between SCOPA-AUT scores, olfactory dysfunction, and motor impairment were investigated using the University of Pennsylvania Smell Identification Test (UPSIT) and the Movement Disorder Society—Unified Parkinson's Disease Rating Scale (MDS-UPDRS), respectively.ResultsFollow-up data were available for 7 years for 171 PD patients and for 5 years for 136 HCs. Mean SCOPA-AUT score increased significantly from baseline to the 7-year follow-up for each autonomic domain, except for female sexual dysfunction. Most patients reported three or more autonomic symptoms. Common clusters of symptoms were composed of combinations of gastrointestinal, urinary, thermoregulatory, and sexual dysfunction. At baseline, greater SCOPA-AUT total score was associated with lower UPSIT scores (r = −0.209, p = 0.006) and with greater total MDS-UDPRS III score (r = 0.218, p = 0.004).ConclusionsAutonomic dysfunction, often with coexistence of autonomic manifestations, is common in early PD and progressively worsens over the first 7 years of disease, suggesting that these symptoms should be addressed with appropriate treatments early in the disease. The association between greater autonomic dysfunction and greater olfactory impairment, coupled with the association with more severe motor scores at baseline, indicates that patients who show more severe autonomic dysfunction could also have more severe involvement of the central nervous system at the time of diagnosis

    Extensive soot compaction by cloud processing from laboratory and field observations

    Get PDF
    Soot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more compact aggregates, affecting their optical, aerodynamic, and surface properties. Here we survey the morphology of ambient soot particles from various locations and different environmental and aging conditions. We used electron microscopy and show extensive soot compaction after cloud processing. We further performed laboratory experiments to simulate atmospheric cloud processing under controlled conditions. We find that soot particles sampled after evaporating the cloud droplets, are significantly more compact than freshly emitted and interstitial soot, confirming that cloud processing, not just exposure to high humidity, compacts soot. Our findings have implications for how the radiative, surface, and aerodynamic properties, and the fate of soot particles are represented in numerical models

    Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations

    Get PDF
    Soot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more compact aggregates, affecting their optical, aerodynamic, and surface properties. Here we survey the morphology of ambient soot particles from various locations and different environmental and aging conditions. We used electron microscopy and show extensive soot compaction after cloud processing. We further performed laboratory experiments to simulate atmospheric cloud processing under controlled conditions. We find that soot particles sampled after evaporating the cloud droplets, are significantly more compact than freshly emitted and interstitial soot, confirming that cloud processing, not just exposure to high humidity, compacts soot. Our findings have implications for how the radiative, surface, and aerodynamic properties, and the fate of soot particles are represented in numerical models.Peer reviewe

    Progression of atypical parkinsonian syndromes: PROSPECT-M-UK study implications for clinical trials

    Get PDF
    The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based endpoint selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy, corticobasal syndrome, multiple system atrophy and related disorders, to compare candidate clinical trial endpoints. In this multicentre United Kingdom study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and magnetic resonance imaging assessments at baseline, six and twelve-months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, progressive supranuclear palsy-subcortical (progressive supranuclear palsy-parkinsonism and progressive gait freezing subtypes), progressive supranuclear palsy-cortical (progressive supranuclear palsy-frontal, progressive supranuclear palsy-speech-and-language, and progressive supranuclear palsy-corticobasal syndrome subtypes), multiple system atrophy-parkinsonism, multiple system atrophy-cerebellar, corticobasal syndrome with and without evidence of Alzheimer’s disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling, and sample sizes for clinical trials of disease modifying agents, according to group and assessment type. Two hundred forty-three people were recruited (117 progressive supranuclear palsy, 68 corticobasal syndrome, 42 multiple system atrophy and 16 indeterminate; 138 [56.8%] male; age at recruitment 68.7 ± 8.61 years). One hundred fifty-nine completed six-month assessment (82 progressive supranuclear palsy, 27 corticobasal syndrome, 40 multiple system atrophy and 10 indeterminate) and 153 completed twelve-month assessment (80 progressive supranuclear palsy, 29 corticobasal syndrome, 35 multiple system atrophy and 9 indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for one-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease specific. In conclusion, phenotypic variance within progressive supranuclear palsy, corticobasal syndrome and multiple system atrophy is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial endpoints, from potential functional, cognitive, clinical or neuroimaging measures of disease progression

    The genetic and clinico-pathological profile of early-onset progressive supranuclear palsy.

    Get PDF
    BackgroundStudies on early-onset presentations of progressive supranuclear palsy (PSP) have been limited to those where a rare monogenic cause has been identified. Here, we have defined early-onset PSP (EOPSP) and investigated its genetic and clinico-pathological profile in comparison with late-onset PSP (LOPSP) and Parkinson's disease (PD).MethodsWe included subjects from the Queen Square Brain Bank, PROSPECT-UK study, and Tracking Parkinson's study. Group comparisons of data were made using Welch's t-test and Kruskal-Wallis analysis of variance. EOPSP was defined as the youngest decile of motor age at onset (≤55 years) in the Queen Square Brain Bank PSP case series.ResultsWe identified 33 EOPSP, 328 LOPSP, and 2000 PD subjects. The early clinical features of EOPSP usually involve limb parkinsonism and gait freezing, with 50% of cases initially misdiagnosed as having PD. We found that an initial clinical diagnosis of EOPSP had lower diagnostic sensitivity (33%) and positive predictive value (38%) in comparison with LOPSP (80% and 76%) using a postmortem diagnosis of PSP as the gold standard. 3/33 (9%) of the EOPSP group had an underlying monogenic cause. Using a PSP genetic risk score (GRS), we showed that the genetic risk burden in the EOPSP (mean z-score, 0.59) and LOPSP (mean z-score, 0.48) groups was significantly higher (P ConclusionsThe initial clinical profile of EOPSP is often PD-like. At the group level, a PSP GRS was able to differentiate EOPSP from PD, and this may be helpful in future diagnostic algorithms. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society

    Diagnosis Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Syndrome

    Get PDF
    IMPORTANCE: Patients with atypical parkinsonian syndromes (APS), including progressive supranuclear palsy (PSP), corticobasal syndrome (CBS) and multiple system atrophy (MSA), may be difficult to distinguish in early stages and are often misdiagnosed as Parkinson’s disease (PD). The diagnostic criteria for PSP have been updated to encompass a range of clinical subtypes, but have not been prospectively studied. OBJECTIVE: To define the distinguishing features of PSP and CBS, and to assess their usefulness in facilitating early diagnosis and separation from PD. DESIGN, SETTING, PARTICIPANTS: Cohort study which recruited APS and PD patients from movement disorder clinics across the UK from September 2015 to December 2018, and will follow up patients over 5 years. APS patients were stratified into PSP-Richardson syndrome, PSP-subcortical (including PSP-parkinsonism and PSP-progressive gait freezing cases), PSP-cortical (including PSP-frontal and PSP/CBS overlap cases), MSA-parkinsonism, MSA-cerebellar, CBS-Alzheimer’s and CBS-non-Alzheimer’s groups. MAIN OUTCOME MEASURES: Baseline group comparisons were conducted using: 1) Clinical trajectory; 2) Cognitive screening scales; 3) Serum neurofilament light chain (NF-L); 4) TRIM11, ApoE and MAPT genotypes; 5) Volumetric MRI. RESULTS: 222 APS cases (101 PSP, 55 MSA, 40 CBS and 26 indeterminate) were recruited (58% male; mean age at recruitment, 68.3 years). Age-matched controls (n=76) and PD cases (n=1967) were also included. Concordance between the ante-mortem clinical diagnosis and pathological diagnosis was achieved in 12/13 (92%) of PSP and CBS cases coming to post-mortem. Applying the MDS PSP diagnostic criteria almost doubled the number of patients diagnosed with PSP. 49/101 (49%) of reclassified PSP patients did not have classical PSP-Richardson syndrome. PSP-subcortical patients had a longer diagnostic latency and a more benign clinical trajectory than PSP-Richardson syndrome and PSP-cortical (p<0.05). PSP-subcortical was distinguished from PSP-cortical and PSP-Richardson syndrome by cortical volumetric MRI measures (AUC 0.84-0.89), cognitive profile (AUC 0.80-0.83), serum NF-L (AUC 0.75-0.83) and TRIM11 rs564309 genotype. Midbrain atrophy was a common feature of all PSP subtypes. 8/17 (47%) of CBS patients with CSF analysis were identified as having CBS-Alzheimer’s. CBS-Alzheimer’s patients had a longer diagnostic latency, relatively benign clinical trajectory, greater cognitive impairment and higher APOE-ε4 allele frequency than CBS-non-Alzheimer’s (p<0.05, AUC 0.80-0.87). Serum NF-L levels distinguished PD from PSP and CBS (p<0.05, AUC 0.80). CONCLUSIONS AND RELEVANCE: Clinical, therapeutic and epidemiological studies focusing on PSP-Richardson syndrome are likely to miss a large number of patients with underlying PSP-tau pathology. CSF analysis defines a distinct CBS-Alzheimer’s subgroup. PSP and CBS subtypes have distinct characteristics that may enhance their early diagnosis

    Neuroimaging biomarkers for clinical trials in atypical parkinsonian disorders: Proposal for a Neuroimaging Biomarker Utility System.

    Get PDF
    INTRODUCTION: Therapeutic strategies targeting protein aggregations are ready for clinical trials in atypical parkinsonian disorders. Therefore, there is an urgent need for neuroimaging biomarkers to help with the early detection of neurodegenerative processes, the early differentiation of the underlying pathology, and the objective assessment of disease progression. However, there currently is not yet a consensus in the field on how to describe utility of biomarkers for clinical trials in atypical parkinsonian disorders. METHODS: To promote standardized use of neuroimaging biomarkers for clinical trials, we aimed to develop a conceptual framework to characterize in more detail the kind of neuroimaging biomarkers needed in atypical parkinsonian disorders, identify the current challenges in ascribing utility of these biomarkers, and propose criteria for a system that may guide future studies. RESULTS: As a consensus outcome, we describe the main challenges in ascribing utility of neuroimaging biomarkers in atypical parkinsonian disorders, and we propose a conceptual framework that includes a graded system for the description of utility of a specific neuroimaging measure. We included separate categories for the ability to accurately identify an intention-to-treat patient population early in the disease (Early), to accurately detect a specific underlying pathology (Specific), and the ability to monitor disease progression (Progression). DISCUSSION: We suggest that the advancement of standardized neuroimaging in the field of atypical parkinsonian disorders will be furthered by a well-defined reference frame for the utility of biomarkers. The proposed utility system allows a detailed and graded description of the respective strengths of neuroimaging biomarkers in the currently most relevant areas of application in clinical trials
    corecore