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Soot particles form during combustion of carbonaceous materials and impact climate and air quality. 
When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can 
act as cloud condensation nuclei, and water condensation or evaporation restructure them to more 
compact aggregates, affecting their optical, aerodynamic, and surface properties. Here we survey the 
morphology of ambient soot particles from various locations and different environmental and aging 
conditions. We used electron microscopy and show extensive soot compaction after cloud processing. 
We further performed laboratory experiments to simulate atmospheric cloud processing under 
controlled conditions. We find that soot particles sampled after evaporating the cloud droplets, are 
significantly more compact than freshly emitted and interstitial soot, confirming that cloud processing, 
not just exposure to high humidity, compacts soot. Our findings have implications for how the radiative, 
surface, and aerodynamic properties, and the fate of soot particles are represented in numerical 
models.

Soot particles, optically defined as black carbon1, are ubiquitous in the atmosphere2,3. They are emitted during 
incomplete combustion of carbonaceous materials including fossil fuels and biomass4. Soot particles contain 
toxic material on their surface, and are considered carcinogenic5. Soot also strongly absorb solar radiation influ-
encing the Earth’s radiative balance through aerosol-radiation interactions, aerosol-cloud interactions, and by 
changing the surface albedo and the atmospheric stability6–8. Soot represents one of the strongest positive anthro-
pogenic radiative forcers, possibly second only to CO2

3,9,10. The properties of soot particles depend on their evo-
lution in the atmosphere; in particular, freshly emitted soot particles are fractal-like lacy aggregates, composed 
of nanometer-sized monomers11–16; however, aged soot particles often have more compact morphologies. This 
transformation affects the particles’ optical, aerodynamic, and surface properties16–21. Therefore, understanding 
these transformations is key to accurately represent the dynamic properties of soot in climate and air-quality 
models.
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Freshly emitted soot is typically hydrophobic22–26 but becomes hydrophilic over time due to condensation of 
organic or inorganic compounds, and coagulation with other particles15,16,19,27–30. Atmospheric oxidizing agents 
such as ozone, hydroxyl radicals, and nitrogen oxides promote the formation of oxygen-containing polar func-
tional groups (e.g., carboxylates) on the soot surface, also making it more hydrophilic31–34. A detailed discussion 
on the water uptake by soot aggregates, based on surface polarity, from different fuel sources can be found in 
Popovicheva et al.35. Hydrophilic soot particles can act as cloud condensation nuclei (CCN) at atmospherically 
relevant supersaturations24,36.

Coating material on the surface of soot, including water, exerts capillary forces between the monomers and 
can cause the aggregate to restructure to a more compact morphology19,20,37. Some researchers proposed that 
soot compaction occurs during the condensation of water38–40, while others argued that the compaction occurs 
during evaporation24,41,42. China et al.18 found that a significant fraction of soot collected in the North Atlantic 
free troposphere was very compact and hypothesized that the compaction was due to cloud processing during 
long-range transport in the atmosphere. In an experiment with diesel soot, Huang et al.43 conducted up to three 
cycles of water condensation-evaporation on soot particles and observed restructuring. They also suggested that 
their findings represent only a lower limit for soot compaction during cloud processing and hypothesized that 
their observations of compact soot aggregates in the Grand Canyon, USA was due to cloud processing. Analyzing 
ambient samples collected during smoke periods (ship and biomass burning emissions), Shingler et al.37 reported 
compaction of soot particles upon humidification. They found that compaction was higher at 95% compared 
to 85% RH, implying additional shrinkage at higher relative humidity. Similarly, Lewis et al.44 found that soot 
particles in ambient smoke samples (at around 20% RH) underwent remarkable compaction after humidification 
(~80% RH). Earlier, in experiments conducted on human beings, Chamberlain et al.45 found that exhaled soot 
particles were compact upon humidification in the respiratory tract compared to the inhaled lacy aggregates. A 
more recent cold cloud processing laboratory experiment also showed that lacy soot aggregates become compact 
after super-cooled water condensation, and even more after ice nucleation17. The authors also found that com-
paction affects the soot optical properties. In fact, light absorption and scattering change when a soot particle 
undergoes morphological transformations, ultimately affecting the soot radiative forcing17–19,21,44,46,47. These lines 
of evidence suggest that water condensation or evaporation on soot particles changes extensively their morpho-
logical, porosity and surface properties, with implications for their effects on climate and human health. However, 
a quantification of these morphological changes for different atmospheric conditions using simple parameters 
that can be used in numerical models is still lacking.

In our study, we survey the morphology of several thousand soot particles using electron microscopy. We use 
a few basic morphological parameters and draw some general conclusions. Because the main goal of this paper is 
to discuss the morphological changes induced during cloud processing, we first focus our attention on samples 
collected at a site in the Po Valley of Italy, where fog and soot particles are abundant. To further quantify the pro-
cess, we simulated some of the ambient conditions in the Michigan Tech Pi Cloud Chamber laboratory facility. 
We discuss the laboratory results to understand the role of water activation and humidification, and to explore 
bounds for the soot compaction. Finally, we summarize the morphological properties of soot collected at eleven 
locations around the world characterized by different sources, time since emission, and atmospheric processes.

Results
Morphology of San Pietro Capofiume soot particles.  From San Pietro Capofiume (SPC), a site in 
northern Italy’s Po Valley, we selected two samples: (1) a sample collected during a dense foggy morning event, 
and (2) a sample collected during a sunny event (see method section). During the image analysis of soot, we 
noticed that many particles were compact with and without visible coating material. Because we quantify com-
paction with morphological parameters (convexity, roundness, aspect ratio, and area equivalent diameter are 
defined in the method section) and because residual coating material, such as organics, can affect the parame-
ters estimated from the 2D projected images, we focused only on soot particles with a small amount of coating 
(categories C0 – bare or thinly coated, and C1 – partly coated, as discussed in the SI). This choice maximizes the 
chances of quantifying cloud-induced compaction by excluding particles compacted by coating material different 
from water (with the exception for soot particles coated by other material after the water evaporated). Most of 
the imaged soot particles were coated (Supplementary Fig. S4). Aerosol mass spectrometry data showed a large 
mass fraction (29–46%) of organics, along with nitrate (17–42%), ammonium (7–15%), and sulfate (4–7%) in 
non-refractory PM1 that might have contributed to the coating on the soot particles and to the soot hydrophilicity 
(Supplementary Figs. S6 and S7). The fraction of C0 and C1 soot particles was higher during the sunny than the 
foggy morning event (48% vs. 21%). Only a minor fraction of soot particles (<6%) were partially encapsulated 
by, or attached to, other materials. We compared the C0 and C1 soot from the sunny event to that from the foggy 
morning, to find evidence of cloud processing in their morphologies. A total of 109 individual soot particles were 
imaged and analysed for the sunny event, and 144 soot particles were imaged and analysed for the foggy morning 
event. In Fig. 1a,b we show convexity and roundness distribution plots, respectively (both parameters increase 
with increasing compaction). It is evident that both distributions are shifted toward larger values for the foggy 
morning sample with respect to the sunny sample.

Consistently with these findings, the aspect ratio and area equivalent diameter distributions of the soot parti-
cles shifted to lower values (Supplementary Figs. S9 and S10), while the soot monomers did not show significant 
size changes (Supplementary Table S2), suggesting similar emission sources and consistent with the low amount 
of coating in the C0 and C1 categories. The means, standard deviations, standard errors, and total errors for differ-
ent morphological parameters are summarized in Supplementary Table S2. These findings support the hypothesis 
that ambient soot compaction can indeed arise from cloud processing alone.
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Morphology of soot particles from the Pi Chamber.  To study the soot compaction process under con-
trolled conditions, we performed experiments in the laboratory. We utilized a turbulent cloud chamber, referred 
to hereafter as the “Pi Chamber” (briefly described in the method section) to subject soot particles to cloud 
processing. We collected three types of soot particles: 1) particles on which water nucleated into droplets but had 
been dried before sampling (residual), 2) particles that had been subjected to high RH conditions but were not 
inside a water droplet at the time of collection (interstitial), and 3) particles just emitted by the combustion source 
and not yet sent to the Pi Chamber (nascent). Residual soot particles from cloud droplets showed clear morpho-
logical compaction with respect to interstitial and nascent soot particles (Fig. 2). We note that both the interstitial 
and residual particles were exposed to RH values near 100%.

Convexity and roundness were significantly higher for the residual compared to the interstitial samples, indi-
cating substantial compaction of soot particles by cloud processing, as shown in the distribution plots in Fig. 3.

These findings are substantiated by a decrease in aspect ratio and area equivalent diameter for the cloud drop-
let residuals, as clearly visible in the distribution plots shown in the SI (Supplementary Figs. S13 and S14). The 
large range in area equivalent diameter reflects the polydisperse size distribution of the soot particles gener-
ated during the experiments that were injected into the chamber without size selection. However, no significant 
change in the size of monomers was detected.

We also compared the morphology of soot particles for nascent and interstitial samples. Their probability 
distributions mostly overlap (Supplementary Figs. S15 and S16) suggesting that the high RH alone did not result 
in soot compaction; in other words, only those particles that activated to cloud droplets (residuals) compacted. 
This result contrasts with some previous studies that found soot to compact at high, but sub-saturated, RH condi-
tions19,37,44,48. The discrepancies between our and previous studies might be due to different degrees of soot aging.

An unrelated but interesting result is that the distribution of the area equivalent diameter for the interstitial 
soot is shifted toward smaller sizes compared to that of nascent particles, indicating that water droplets nucleated 
preferentially onto larger particles49 (Fig. 4).

The average monomer diameters for the soot particles from the Pi Chamber were smaller than those of the 
ambient soot (Tables S2 and S4). The size of the monomers in soot aggregates depends on various factors like 
flaming conditions, fuel type etc.50,51, and atmospheric aging. The soot particles sampled in the Pi Chamber were 

Figure 1.  Convexity and roundness of soot particles from the San Pietro Capofiume site in the Po Valley, Italy. 
Distributions of (a) convexity and (b) roundness for soot particles of categories C0 and C1. The colored bands 
represent 68% confidence intervals (see the method section). The total number fraction of particles for each 
distribution is normalized to 100%.

Figure 2.  Scanning electron microscopy micrographs of interstitial and residual soot particles collected from 
the Pi Chamber. Soot particles were collected on polycarbonate membranes and imaged at an accelerating 
voltage of 1 kV, an emission current of 10 μA, and a working distance of 4 mm: (a) interstitial soot particle of 
convexity 0.56 and roundness 0.24 (magnification of 90 kX), and (b) residual soot particle of convexity 0.84 and 
roundness 0.51 (magnification of 100 kX). The dark spots are pores in the membranes.
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fresh (collected within an hour from emission), while the particles sampled at the SPC site were mostly aged. 
However, we also note that the differences in the averaged monomer diameters in our samples are not statisti-
cally significant. Finally, the size distribution of nascent soot generated by kerosene combustion during the Pi 
Chamber experiments are remarkably similar to the size distribution of the soot particles collected during the 
sunny event at SPC (Figs. 4 and S10).

Discussion
The Pi Chamber experiments confirmed that soot was compacted during cloud processing and not because of 
high RH conditions. Interestingly, the RH during the period of the “sunny” sample from the San Pietro Capofiume 
campaign remained above 75%, meaning that the particles were humidified and yet the soot morphology was 
markedly different with respect to the “foggy morning” case. However, the Pi Chamber samples showed much 
greater changes in morphology compared to the SPC ambient samples. This observation is consistent with the 
fact that the ambient samples are a complex mixture of soot of different degrees of aging and processing, com-
pared to the chamber experiments. In addition, we had no means to separate interstitial from residuals during the 
SPC ambient sampling. During the sunny event, pre-existing soot might already have been cloud processed by 
a previous fog event. Therefore, it is reasonable that the roundness and the convexity of the ambient soot for the 
sunny event were higher than those of the interstitial particles collected from the Pi Chamber. It is interesting to 
note that the roundness and convexity distribution plots for the foggy morning event (blue shades in Fig. 1) and 
those for the cloud droplet residuals from the Pi Chamber (blue shades in Fig. 3) are quite similar. This suggests 
that the right side of these convexity and roundness distributions might represent upper limits for these param-
eters in warm cloud conditions and for short processing times. The mean values of convexity and roundness are 
also comparable to the mean values of convexity (0.75) and roundness (0.45) observed by China et al.17 in diesel 
soot residuals from liquid water droplets. The values presented here are, however, lower than the values obtained 
for ice crystal residuals (convexity = 0.83 and roundness = 0.55) reported by China et al.17, suggesting that ice 
nucleation might further compact soot. These observations might explain why the mean values of roundness and 
convexity for the SPC and Pi Chamber cloud processed soot are slightly lower than the convexity and roundness 

Figure 3.  Convexity and roundness of soot particles from the Pi Chamber. Distribution of (a) convexity, and 
(b) roundness for residual and interstitial soot particles. The colored bands represent 68% confidence intervals. 
The total number fraction of particles for each distribution is normalized to 100%.

Figure 4.  Distribution of the area equivalent diameter of nascent and interstitial soot particles from the Pi 
Chamber. The colored bands represent 68% confidence intervals. The total number fraction of particles for each 
distribution is normalized to 100%.

https://doi.org/10.1038/s41598-019-48143-y


5Scientific Reports |         (2019) 9:11824  | https://doi.org/10.1038/s41598-019-48143-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Fi
gu

re
 5

. 
C

on
ve

xi
ty

 P
ro

ba
bi

lit
y 

D
ist

rib
ut

io
n 

Fu
nc

tio
ns

 (P
D

Fs
) a

nd
 b

ox
 p

lo
ts

 fo
r C

0 
an

d 
C

1 
so

ot
 p

ar
tic

le
s f

ro
m

 d
iff

er
en

t l
oc

at
io

ns
. I

n 
ea

ch
 b

ox
 p

lo
t, 

th
e v

er
tic

al
 w

hi
te

 li
ne

 re
pr

es
en

ts
 th

e m
ed

ia
n 

an
d 

th
e g

re
y 

di
am

on
d 

re
pr

es
en

ts
 th

e m
ea

n 
co

nfi
de

nc
e i

nt
er

va
l f

or
 ea

ch
 d

ist
rib

ut
io

n,
 th

e b
ox

 si
de

s r
ep

re
se

nt
 2

5%
 an

d 
75

%
 q

ua
nt

ile
s a

nd
 th

e w
hi

sk
er

s r
ep

re
se

nt
 th

e l
ow

er
 an

d 
up

pe
r e

xt
re

m
es

. F
or

 
ea

ch
 d

ist
rib

ut
io

n,
 N

 (i
n 

br
ac

ke
ts

) i
s t

he
 n

um
be

r o
f s

oo
t p

ar
tic

le
s a

na
ly

se
d.

https://doi.org/10.1038/s41598-019-48143-y


6Scientific Reports |         (2019) 9:11824  | https://doi.org/10.1038/s41598-019-48143-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

of soot samples retrieved at the Pico Mountain Observatory in the Azores, Portugal18. In their study, the particles 
were transported in the marine free troposphere at heights that might have resulted in freezing for at least some 
of the soot, resulting in more compact particles in the overall soot population. In addition, the soot analysed in 
their study was transported for several days in the atmosphere, allowing for multiple cycles of cloud processing. 
Therefore, both cloud processing type (cold vs. warm) and transport time probably play a role in determining the 
upper limit of soot compaction in the atmosphere.

To further put these results into a broader context, we investigated the morphology of ambient soot particles 
collected from different locations around the globe. We present the convexity results in Fig. 5 (a similar map for 
roundness is shown in Supplementary Fig. S17). Each histogram represents the probability distribution function 
of convexity. It is to be noted that the roundness and convexity plots were constructed only from soot with a small 
amount of coating (C0 and C1 categories), as for the data shown in the rest of the paper. In Table 1, we present the 
mean values of roundness and convexity for these ambient soot samples along with some laboratory results. The 
values are sorted by increasing convexity. Estimated sample age since emission and potential for participation in 
cloud processing are also reported. We should note that the time scale is only a semi-quantitative estimate.

It is evident that convexity and roundness of soot particles increase with aging time and the potential for 
cloud processing. Supplementary Figs. S18 and S19 summarize how the two morphological parameters increase 
with soot aging. For all time scales, the cloud processed soot particles have the highest convexity and roundness 
values, substantiating the primary role of cloud processing in soot compaction. Freshly emitted ambient soot 
particles collected in Bhaktapur, Nepal and West Bengal, India had among the lowest values of roundness (0.32 
and 0.36) and convexity (0.59 and 0.63). Samples in Bhaktapur were collected near roads around brick kiln sites 
dominated by fresh emissions (less than a few minutes). Samples collected from a rural site in West Bengal, India, 
showed slightly higher values probably due to the slightly more aged particles (several minutes). Ambient soot 
particles collected during the 2010 Carbonaceous Aerosol and Radiative Effects Study (CARES)52 in the urban 
area of Sacramento, California, USA, showed slightly higher values; while samples collected during the same 
campaign but from the foothills of the Sierra Nevada Mountains in Cool, California, USA, showed even higher 
values, consistent with the longer aging times (several hours). The roundness and convexity of ambient soot from 
an urban site near downtown Mexico City (collected during the Megacity Initiative: Local and Global Research 
Observations (MILAGRO) campaign)53 were comparable to those from Sacramento, which is reasonable consid-
ering the similar aging times. Fresh samples (a few seconds from emission) collected at a road site in Ann Arbor, 
Michigan, USA54, also showed comparable values of roundness and convexity to the samples collected during the 
MILAGRO and CARES, but somewhat surprisingly higher than those from Bhaktapur, Nepal and West Bengal, 
India. The higher values might be due to the presence of soot emission from heavy-duty vehicles on the road. 

Convexity Roundness
DAeq 
[nm] Sampling location, probable dominant source (sampling date, estimated sample age*)

Potential for 
cloud processing N Literature

0.56 0.29 239 Michigan Tech Pi Chamber, interstitial kerosene soot (January 2017, ~minutes) low 161 This study

0.59 0.32 323 Bhaktapur, Nepal, brick kiln oven and road traffic (March 2017, ~minutes) low 123 This study

0.63 0.36 125 West Bengal, India, urban (January 2018, ~minutes/mixed) low 101 This study

0.65 0.38 324 Sacramento, California, urban (CARES, June 2010, ~minutes/mixed) low 161 This study, Sharma et 
al.69 and Zaveri et al.52

0.70 0.40 222 Ann Arbor, Michigan, road traffic (July–August 2010, ~minutes/mixed) low 796 China et al.54

0.70 0.41 410 Los Alamos, New Mexico, Las Conchas Fire plume (July 2011, <2 hours) low 411 China et al.57

0.70 0.41 257 Mexico City, urban (MILAGRO, March 2006, ~minutes/mixed) low 1601 This study and China 
S.85

0.71 0.41 153 Pacific Northwest National Laboratory, Washington nascent diesel soot (November 
2013–January 2014, ~minutes) low 226 China et al.17

0.71 0.43 326 Po Valley, Italy, sunny day, urban outflow and road traffic (December 2015, ~minutes/
mixed) low 109 This study

0.72 0.42 237 Cool, California, urban outflow and road traffic (CARES, June 2010, ~hours) low 201 This study, Sharma et 
al.69 and Zaveri et al.52

0.75 0.45 179 Pacific Northwest National Laboratory, Washington, supercooled water droplet residuals 
from diesel soot (November 2013–January 2014, ~minutes) high 208 China et al.17

0.76 0.45 330 Los Alamos, New Mexico, Whitewater-Baldy Complex Fire plume (May 2012, ~several 
hours) low 55 This study and 

Girotto G.86

0.78 0.47 224 Detling, UK, London and Benelux outflows (January 31st, Benelux; February 2–3, 
London, 2012, ~several hours) medium 1549 This study and 

Girotto G.86

0.78 0.48 192 Michigan Tech Pi Chamber turbulent cloud, residual kerosene soot (January 2017, 
~minutes) high 160 This study

0.80 0.52 237 Po Valley, Italy, foggy morning, urban outflow and road traffic (December 2015, 
~minutes/mixed) high 144 This study

0.83 0.55 201 Pacific Northwest National Laboratory, Washington, ice crystal residuals from diesel soot 
(November 2013–January 2014, ~minutes) high 241 China et al.17

0.84 0.58 248 Pico Mountain Observatory, Azores, long range transport (July 2012, ~1 week) high 189 China et al.18

Table 1.  Mean values of roundness, convexity and area equivalent diameter (DAeq) of ambient and laboratory 
soot particles (soot category C0 and C1). *With the term “mixed” we indicate the potential presence of soot 
particles carried over from earlier emissions and mixing with fresher emissions. N is the number of single soot 
particles analyzed. The data are sorted by increasing convexity.

https://doi.org/10.1038/s41598-019-48143-y


7Scientific Reports |         (2019) 9:11824  | https://doi.org/10.1038/s41598-019-48143-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

China et al.54 have found that the fractal dimension of soot increases with the fraction of heavy-duty vehicles. 
Additionally the convexity and roundness of lacy aggregates weakly decrease with the aggregate size54; the parti-
cles collected in Ann Arbor were among the smallest found for ambient samples (note the area equivalent diam-
eter in Table 1). Finally, pre-existing soot particles might have been transported to the sampling sites from other 
surrounding sources. For ambient soot collected in Detling, UK, during the Clean air for London (ClearfLo) 
campaign55, the values were high consistent with somewhat long aging times for the air masses originating from 
the outskirts of London and the Benelux region. The higher values of roundness and convexity of the soot par-
ticles in Detling compared to those of Mexico City and California (Sacramento and Cool) might also be due to 
the moist weather conditions (winter) in the UK compared to the generally dry atmosphere of Mexico City and 
California. In a separate study, Wang et al.15 reported values of roundness (0.39) and convexity (0.70) for partly 
coated soot samples similar to our samples from Mexico City and California (Cool). They collected soot samples 
at a mountain site in a polluted area in the North China Plain during dry haze days in winter (low RH < 65%). 
Soot compaction was also observed for two fire events, the Whitewater-Baldy complex fire56, and the Las Conchas 
fire (samples were collected at the Los Alamos National Laboratory)57. Both roundness and convexity were higher 
for the more-aged soot from the Whitewater-Baldy fire. As mentioned earlier, the highest values of roundness 
and convexity were found for soot collected in the free troposphere at the Pico mountain observatory18 probably 
due to the long transport time (several days) from the source (typically in North America), and the likely multiple 
cloud processing cycles, potentially including ice formation.

We point out that several other factors can be important for the compaction process. For example, the soot 
surface chemistry (including thin coatings of different origins and aging) can impact the soot ability to interact 
with water, altering its wettability and ability to act as CCN. Additionally, the pH of the cloud droplets might also 
affect the compaction. With the data available for this study, we can only speculate on the effects of water pH on 
soot morphology. If there is an effect, it must be mediated by soot surface functional groups. These may comprise 
groups such as anhydrides, which can hydrolyze to carboxylic acids and partly dissociate when particles take 
up water becoming fog droplets, in which the pH would increase58. However, this process could also increase 
hydrogen bonding between the elements on the soot surface and stabilize the soot inclusions inside the droplets. 
These hypotheses should be the subject of future laboratory studies where the soot surface or the water pH could 
be varied while analyzing the effects on the soot compaction.

Our results have implications for how the properties of soot particles transported in the atmosphere should be 
represented in numerical models for climate and air quality applications. In fact, in recent ice nucleation studies, 
Mahrt et al.59, and Nichman et al.60 found that the ice nucleation ability of soot is affected by the availability of 
mesopores, suggesting that soot compaction might change its ice nucleation activity by affecting the number of 
mesopores. Additionally, several studies have shown that the optical properties of soot change when the soot 
becomes compact, with the effect of compaction being more pronounced for light scattering than for absorp-
tion17,18,46,61. Compact soot also has a higher effective density than lacy soot62, which can have an effect on dry 
deposition and electrical mobility. For example, the deposition of fibre-like particles in the lungs, such as for fresh 
soot, is enhanced compared to compact particles of the same mass, due to higher drag63,64. Finally, heterogeneous 
reactions on soot particles have shown to be affected by changes in their surface area because of compaction65. 
Related to this last issue, studies have shown that the toxicity of inhaled aerosol, including soot particles, increases 
with the surface area of the particles66,67, while in a recent study in Japan, Kiriya et al.68 showed that fresh soot 
concentrations correlated with aerosol surface area measurements, with the correlation weakening for aged soot.

Methods
Morphology and mixing state of soot.  The focus of our study was to quantify the effects that water 
has on the soot morphology – not other coating material such as organics – therefore, we wanted to analyze the 
morphological descriptors only for soot particles that appeared to have little coating in the electron microscopy 
images. However, often, ambient soot particles are coated by different materials (other than water). Some soot 
particles are so thickly coated that the monomers are not clearly distinguishable in scanning electron microscopy 
images, this can bias the calculation of the morphological parameters, for example, if organic material fills the 
voids between monomers. Therefore, to achieve our goal, for ambient samples, we first analysed the mixing state 
of soot particles and classified them into four categories based on a visual inspection of the coating thickness: C0, 
C1, C2, and C3 as detailed in the SI and discussed elsewhere57,69. The results of such classification are provided 
in section 3 of the SI. From this classification we then selected only the soot belonging to categories C0 and C1, 
as mentioned in previous sections. Soot particles generated in the laboratory were freshly emitted with no visual 
coating and were all in the C0 category.

To quantify the structural changes that soot underwent during cloud processing and assess the degree of com-
paction, we investigated several morphological parameters. These include roundness, convexity, aspect ratio (AR), 
and area equivalent diameter (DAeq). Detailed descriptions of these parameters and the limitations of image pro-
cessing and analysis can be found elsewhere54,57,70 but we will briefly summarize the meanings of these parameters 
next. Roundness is the ratio of the projected area of an aggregate (Ap) to the area of a circle having a diameter equal 
to Lmax, the maximum length of the aggregate, and is a measure of the particle geometry and topology. Convexity 
is the ratio of Ap to the area of the convex hull polygon inscribing the aggregate and is a topological property of the 
particle. AR is the ratio of Lmax and the width of the projected aggregate (W) orthogonal to Lmax, and is a measure 
of the elongation of the particle. DAeq is the diameter of a spherical particle with a projected area equivalent to 
Ap and provides a quantitative measure of the particle size. The three parameters AR, convexity, and roundness 
incorporate different and somewhat complementary information. For example, a spherical particle has convexity, 
roundness, and AR values each equal to unity, while a rectangular parallelepiped laying on its long side has a con-
vexity of unity, but its roundness is lower than one and its AR is larger than one. An example of the calculation of 
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AR, convexity, and roundness of a soot particle is shown in Supplementary Fig. S1. Specifically, lacy soot particles 
with an open elongated structure are expected to show lower convexity and roundness, and higher AR values, with 
respect to compact soot particles. This is the case even if the particles (compact or lacy) have the same mass and 
identical monomer diameters. Additionally, when a soot particle becomes compact, we expect the DAeq to decrease.

To calculate the mean and confidence intervals for each bin in the distributions shown in Figs. 1, 3 and 4, as 
well as in the SI, we used a bootstrap method, in which frequency distributions are constructed from the raw data 
with 100,000 resampling with replacement71. The colored bands represent 68% confidence intervals for each bin.

Finally, we note that to quantify the morphology of soot, we also calculated the fractal dimension (Df) of soot 
particles. However, the Df calculation methods, which are ensemble based, require a statistically significant number 
of soot particles that underwent similar processing72; therefore, a quantitative determination of Df for ambient parti-
cles is uncertain and is not discussed here any further (Df estimates are reported in the Supplementary Information).

Ambient samples from San Pietro Capofiume (SPC).  We collected 13 ambient samples at a rural site 
in San Pietro Capofiume (SPC), in the Po Valley in Northern Italy, during a campaign period of one month in 
November-December of 2015. The low local temperature and high RH typical of the fall season, result in sta-
ble atmospheric conditions, favoring fog formation that interacts with anthropogenic pollutants present in high 
concentrations in the region73,74. We collected ambient particles onto 13 mm diameter polycarbonate filter mem-
branes (pore size of 0.1 μm, Whatman Inc., Chicago, Illinois, USA) and 3 mm diameter lacy formvar copper grids 
(300 mesh copper, Ted Pella, Inc., Redding, California, USA) by using an aspiration technique that is described 
elsewhere17,54. During sampling, ambient air was drawn through a PM2.5 inlet using a diaphragm vacuum pump 
(Hargraves Technology Corporation, New Hampshire, USA). The flow rate varied between 0.12 and 0.26 lpm; 
however, it was nearly constant during each sampling period. Out of the 13 samples, we used five sample sets col-
lected during different atmospheric conditions (Supplementary Figs. S2 and S3). Four sample sets were collected 
during fog conditions. Foggy events were characterized by low solar irradiance (<300 W m−2) and high Liquid 
Water Content (LWC > 0.08 g m−3). The LWC was measured with a Particulate Volume Monitor PVM-10075. As 
a reference, another sample set was collected during a sunny event (on November 30th) and was characterized by 
higher solar irradiance (~400 W m−2), close to the peak solar irradiance (~456 W m−2, see Supplementary Fig. S3) 
and LWC below the detection limit (<0.01 g m−3). Supplementary Table S1 provides details on sampling times and 
conditions. We used all five samples to study the soot mixing states. Out of these five samples, two were used to 
study the soot compaction described in this paper. We chose a sample during a dense foggy period in the morning 
(on December 4th) that we refer to as “foggy morning event”, with a fairly stable and elevated LWC ~0.11 g m−3. 
We compared the morphology of soot from this sample with the soot collected during the sunny event. We should 
mention, that the PM2.5 inlet did not allow us to collect soot particles that were solely residuals of fog droplets and 
therefore, a clear distinction between residuals and interstitials was not possible. However, soot particles from the 
foggy morning event were still expected to be more likely processed by the fog, while the soot particles from the 
sunny event were expected to contain a larger fraction of soot not yet processed. The two sample sets were collected 
approximately at the same time of the day. Sulfur/carbon atomic ratios for coated soot were quantified in those 
two samples using a computer controlled scanning electron microscope (CCSM) coupled with Energy-Dispersive 
X-ray spectroscopy (EDX) (Quanta 3D model, FEI, Inc.). The EDX spectra were acquired for 10 seconds of live 
time, at an accelerating voltage of 20 kV and a beam current of ~500 pA. Lacy-type transmission electron micro-
scope (TEM) grids were used for EDX to reduce substrate carbon signals. A total of 204 and 426 internally mixed 
soot particles were analyzed with EDX for the sunny event and foggy morning event samples, respectively.

For single particle imaging and classification, we used the samples collected on polycarbonate membranes. 
The membranes were coated with 1.5 nm (±10%) thick layer of Au/Pd alloy in a sputter coater (Cressington 
208HR) and we imaged individual particles with a Hitachi S-4700 field emission scanning electron microscope 
at a magnification of 60–100 kX, an accelerating voltage of 1 kV, and a working distance of 4 mm. We also cap-
tured images using an environmental transmission electron microscope (FEI, Inc. model Titan 80–300) operated 
at 300 kV for soot classification. We calculated the morphological parameters with the freely available image 
processing software ImageJ76. For the image analysis, we used a Gaussian blur filter to smooth the edges of the 
binarized images. The results of these analyses are reported in section 4 of the SI.

A High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS, Aerodyne Research Inc.)77 was 
used to measure the mass concentration of non-refractory components in submicron ambient aerosol (in μg m−3).  
Organic, sulphate, nitrate, ammonium, and chloride aerosol concentrations were measured with a resolution of 
5 minutes in V- mode (mass resolution of about 2200 at m/z 28). Particles were dried with a Nafion drier before 
analysis (relative humidity below 30%). The collection efficiency was corrected based on aerosol chemical compo-
sition, according to Bahreini et al.78, and validated by comparison with particle size distribution data and sulfate 
off-line measurements. The mass concentration of black carbon equivalent (a surrogate for soot) in the ambient 
samples was measured with a 7-wavelength Aethalometer (Magee, AE31) with a time resolution of 5 minutes. 
Attenuation measurements were corrected according to Virkkula et al.79, and equivalent black carbon concen-
trations were calculated from attenuation data at 880 nm and assuming a mass absorption cross section equal to 
16.6 m2 g−1, as suggested by the manufacturer.

To investigate soot aerosol sources, we analyzed aethalometer absorption coefficients with the Sandradewi et al.80  
model. The model allowed us to quantify the contribution of traffic emission and wood burning emission to aer-
osol light absorption, assuming a constant and known absorption Ångström exponent for traffic and wood burn-
ing carbonaceous aerosol (0.90 and 1.68, respectively)81. The absorption coefficient assigned to traffic and wood 
burning by the model was on average 9.0 Mm−1 and 6.7 Mm−1 for the “sunny” sample period, and 6.0 Mm−1 
and 3.9 Mm−1 for the “foggy” sample period, respectively. The traffic to wood burning ratios were quite similar  
(1.3 and 1.5), suggesting similar sources and aging of soot particles during the two cases studied.
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Ambient samples from other locations.  In addition to the SPC, soot particles were collected at ten addi-
tional locations around the world. Sampling techniques used either aspiration or impaction (four-stage cascade 
impactors). Specimen collection media varied, but typically included polycarbonate membranes and formvar 
copper grids. Sample preparation and imaging conditions also varied. Information on sampling locations and 
conditions is provided in Table 1.

Laboratory sample collection from the Pi Chamber.  The name of the Pi Chamber derives from the 
interior volume of 3.14 m3 when a cylindrical insert is in place. A detailed discussion of the Pi Chamber is pro-
vided by Chang et al.82. In the Pi Chamber, clouds can be formed by expansion or by turbulent mixing. In the 
mixing mode, a long-lasting, steady-state cloud is formed by imposing a temperature gradient between the top 
and bottom surfaces (thermal plates), while maintaining the two surfaces saturated with respect to water. For 
the experiments discussed here, we generated a mixing cloud, using a temperature gradient of 17 K between the 
warmer bottom plate and the colder top plate to drive convection, a process that is described in detail elsewhere83. 
Soot particles were drawn from a kerosene flame using an eductor pump (AIR-VAC, model: AVR093M) driven 
by compressed clean and dry air, and injected into the Pi Chamber. We then formed a cloud by using the soot 
particles as cloud condensation nuclei. The LWC in the Pi Chamber during the experiment was ~0.085 g m−3 
(measured using a phase Doppler interferometer, Dantec Dynamics), similar to that measured at SPC. We used a 
Pumped Counterflow Virtual Impactor (PCVI-8100, Brechtel Mfg.) to collect cloud droplets. In the PCVI, clean 
dry air pumped in the direction opposite (counterflow) to that of the input flow drives smaller interstitial aerosols 
away, allowing only larger particles (mainly droplets) to pass through the inlet, due to their inertia84. In other 
words, only particles with enough mass can overcome the counterflow, and pass through the sampling orifice. 
Because dry air is used in the counterflow, the droplets rapidly evaporate, leaving behind the residual soot parti-
cles. The PCVI was run in flow conditions to achieve a size cut of ~4.5 μm. To collect interstitial aerosol particles 
(i.e., soot which did not activate to become cloud droplets), we used a 6.4 mm outer diameter stainless steel tube 
which protrudes near to the center of the PI Chamber (~1 m). Both the residuals from the PCVI and the inter-
stitial aerosol passed through a diffusion dryer to further remove moisture before being sampled or measured 
with a Scanning Mobility Particle Sizer (SMPS- TSI-3772). A schematic of the set-up is shown in Supplementary 
Fig. S11. In addition, during the same experiment, we collected a sample of the nascent soot particles (freshly 
emitted) before injecting them into the Pi Chamber to compare the morphology of nascent soot with that of 
interstitial soot. All samples were collected on 13 mm diameter nuclepore polycarbonate membranes, having a 
pore size of 0.1 μm (Whatman Inc., Chicago, Illinois, USA) using a custom-built sampler at a flow rate of 0.4 lpm. 
Single particles were imaged with a Hitachi S-4700 field emission scanning electron microscope at a magnifica-
tion of 60–100 kX, an accelerating voltage of 1 kV, and a working distance of 4 mm.

Comparing the cloud droplet residual with the interstitial and nascent soot allows us to investigate and quan-
tify the differences between the morphology of soot that took part in cloud processing compared with those that 
did not. We note, that both the interstitial and residual samples were exposed to RH values near100 %, therefore, 
the comparison with the nascent soot also allows to separately determine the effect of high RH within the times-
cale of the experiment.

Uncertainties in the image processing.  In addition to statistical errors, there are potential errors in the 
morphological parameters associated with image acquisition and image processing. Bhandari et al.70 estimated 
the errors in convexity and roundness to be 3.9% and 4.4%, respectively. Similarly, the errors in Lmax, W, and dp 
were estimated to be 1.5%, 1.8%, and 14%, respectively. Using the errors in Lmax and W, we calculated 1.9% uncer-
tainty in the AR. The uncertainty in DAeq was estimated to be 3.2%. We calculated the total error by propagating 
all the errors (statistical error and errors associated with image acquisition and image processing) in quadrature.
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