131 research outputs found

    Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage.

    Get PDF
    Intracerebral haemorrhage (ICH) is a devastating condition with limited treatment options, and current understanding of pathophysiology is incomplete. Spontaneous cerebral bleeding is a characteristic of the human condition that has proven difficult to recapitulate in existing pre-clinical rodent models. Zebrafish larvae are frequently used as vertebrate disease models and are associated with several advantages, including high fecundity, optical translucency and non-protected status prior to 5 days post-fertilisation. Furthermore, other groups have shown that zebrafish larvae can exhibit spontaneous ICH. The aim of this study was to investigate whether such models can be utilised to study the pathological consequences of bleeding in the brain, in the context of pre-clinical ICH research. Here, we compared existing genetic (bubblehead) and chemically inducible (atorvastatin) zebrafish larval models of spontaneous ICH and studied the subsequent disease processes. Through live, non-invasive imaging of transgenic fluorescent reporter lines and behavioural assessment we quantified brain injury, locomotor function and neuroinflammation following ICH. We show that ICH in both zebrafish larval models is comparable in timing, frequency and location. ICH results in increased brain cell death and a persistent locomotor deficit. Additionally, in haemorrhaged larvae we observed a significant increase in macrophage recruitment to the site of injury. Live in vivo imaging allowed us to track active macrophage-based phagocytosis of dying brain cells 24 hours after haemorrhage. Morphological analyses and quantification indicated that an increase in overall macrophage activation occurs in the haemorrhaged brain. Our study shows that in zebrafish larvae, bleeding in the brain induces quantifiable phenotypic outcomes that mimic key features of human ICH. We hope that this methodology will enable the pre-clinical ICH community to adopt the zebrafish larval model as an alternative to rodents, supporting future high throughput drug screening and as a complementary approach to elucidating crucial mechanisms associated with ICH pathophysiology

    Assessing Inflammation in Acute Intracerebral Hemorrhage with PK11195 PET and Dynamic Contrast-Enhanced MRI

    Get PDF
    BACKGROUND AND PURPOSE: Studies in animal models suggest that inflammation is a major contributor to secondary injury after intracerebral hemorrhage (ICH). Direct, noninvasive monitoring of inflammation in the human brain after ICH will facilitate early-phase development of anti-inflammatory treatments. We sought to investigate the feasibility of multimodality brain imaging in subacute ICH. METHODS: Acute ICH patients were recruited to undergo multiparametric MRI (including dynamic contrast-enhanced measurement of blood-brain barrier transfer constant (Ktrans ) and PET with [11 C]-(R)-PK11195). [11 C]-(R)-PK11195 binds to the translocator protein 18 kDa (TSPO), which is rapidly upregulated in activated microglia. Circulating inflammatory markers were measured at the time of PET. RESULTS: Five patients were recruited to this feasibility study with imaging between 5 and 16 days after onset. Etiologies included hypertension-related small vessel disease, cerebral amyloid angiopathy (CAA), cavernoma, and arteriovenous malformation (AVM). [11 C]-(R)-PK11195 binding was low in all hematomas and 2 (patient 2 [probable CAA] and 4 [AVM]) cases showed widespread increase in binding in the perihematomal region versus contralateral. All had increased Ktrans in the perihematomal region (mean difference = 2.2 × 10-3 minute-1 ; SD = 1.6 × 10-3 minute-1 ) versus contralateral. Two cases (patients 1 [cavernoma] and 4 [AVM]) had delayed surgery (3 and 12 months post-onset, respectively) with biopsies showing intense microglial activation in perilesional tissue. CONCLUSIONS: Our study demonstrates for the first time the feasibility of performing complex multimodality brain imaging for noninvasive monitoring of neuroinflammation for this severe stroke subtype

    C-Reactive Protein Predicts Hematoma Growth in Intracerebral Hemorrhage

    Get PDF
    Background and Purpose—Early hematoma growth (EHG) occurs in about one third of patients with spontaneous intracerebral hemorrhage. The main aim of this study was to investigate the potential of plasma C-reactive protein (CRP) for predicting EHG after acute spontaneous intracerebral hemorrhage. Methods—Plasma CRP was measured within 6 hours of onset (median, 120 minutes) in 399 patients with primary or vitamin K antagonist–associated spontaneous intracerebral hemorrhage and without recent infection. Computed tomography brain scans were performed at baseline and repeated within 24 hours (median, 22 hours). The primary outcome was EHG, defined as absolute growth >12.5 cm3 or relative growth >33%. Secondary outcomes included early neurological worsening (ENW) using the Glasgow Coma Scale and 30-day mortality. Multivariable regression analyses were used to evaluate associations of CRP concentration and outcomes. Kaplan–Meier analysis was used for survival. Results—EHG occurred in 25.8%, ENW in 19.3%, and mortality was 31.8% at 30 days. Thirty-day mortality was significantly higher in patients with ENW (hazard ratio, 3.21; 95% confidence interval, 2.00–5.17; P10 mg/L independently predicted EHG (odds ratio, 4.71; 95% confidence interval, 2.75–8.06; P<0.0001) and ENW (odds ratio, 2.70; 95% confidence interval, 1.50–4.84; P=0.0009). Conclusions—CRP>10 mg/L is independently predictive of EHG and ENW, both of which are associated with increased mortality. Inflammation may be important in contributing to EHG and warrants further investigation

    Clinical Course and Outcomes of Small Supratentorial Intracerebral Hematomas.

    Get PDF
    Intracerebral hemorrhage (ICH) volume, particularly if ≥30 mL, is a major determinant of poor outcome. We used a multinational ICH data registry to study the characteristics, course, and outcomes of supratentorial hematomas with volumes <30 mL.Basic characteristics, clinical and radiological course, and 30-day outcomes of these patients were recorded. Outcomes were categorized as early neurological deterioration (END), hematoma expansion, Glasgow Outcome Scale (GOS), and in-hospital death. Poor outcome was defined as composite of in-hospital death and severe disability (GOS ≤ 3). Comparison was conducted based on hemorrhage location. Logistic regression using dichotomized outcome scales was applied to determine predictors of poor outcome.Among 375 cases of supratentorial ICH with volumes <30 mL, expansion and END rates were 19.2% and 7.5%, respectively. Hemorrhage growth was independently associated with END (odds ratio: 28.7, 95% confidence interval [CI]: 8.51-96.5; P < .0001). Expansion rates did not differ according to ICH location. Overall, 13.9% (exact binomial 95% CI: 10.5-17.8) died in the hospital and 29.1% (CI: 24.5-34.0) had severe disability at 30 days; there was a cumulative poor outcome rate of 42.9% (CI: 37.9-48.1). Age, admission Glasgow Coma Scale, intraventricular extension, and END were independently associated with poor outcome. There was no difference in poor outcome rates between lobar and deep locations (40.2% versus 43.8%, P = .56).Patients with supratentorial ICH <30 mL have high rates of poor outcome at 30 days, regardless of location. Nearly 1 in 5 hematomas <30 mL expands, leading to END or death

    Mothers' perceptions of child weight status and the subsequent weight gain of their children : a population based longitudinal study

    Get PDF
    BACKGROUND: There is a plethora of cross sectional work on maternal perceptions of child weight status showing that mothers typically do not classify their overweight child as being overweight according to commonly used clinical criteria. Awareness of overweight in their child is regarded as an important prerequisite for mothers to initiate appropriate action. The gap in the literature is determining whether, if mothers do classify their overweight child's weight status correctly, this is associated with a positive outcome for the child's body mass index (BMI) at a later stage. OBJECTIVE: To explore longitudinal perceptions of child weight status from mothers of a contemporary population-based birth cohort (Gateshead Millennium Study) and relationships of these perceptions with future child weight gain. METHODS: Data collected in the same cohort at 7, 12 and 15 years of age: mothers' responses to two items concerning their child's body size; child's and mother's BMI; pubertal maturation; demographic information. RESULTS: Mothers' perceptions of whether their child was overweight did not change markedly over time. Child BMI was the only significant predictor of mothers' classification of overweight status, and it was only at the extreme end of the overweight range and in the obese range that mothers reliably described their child as overweight. Even when mothers did appropriately classify their child as overweight at an earlier stage, this was not related to relatively lower child BMI a few years later. CONCLUSIONS: Mothers tend to classify their child as overweight in only more extreme cases. It is an important finding that no beneficial impact was shown on later child BMI in overweight children whose mothers classified their child's weight status as overweight at an earlier stage.International Journal of Obesity accepted article preview online, 25 January 2017. doi:10.1038/ijo.2017.20

    Physiological and Psychological Effects of Deception on Pacing Strategy and Performance: A Review

    Get PDF
    The aim of an optimal pacing strategy during exercise is to enhance performance whilst ensuring physiological limits are not surpassed, which has been shown to result in a metabolic reserve at the end of the exercise. There has been debate surrounding the theoretical models that have been proposed to explain how pace is regulated, with more recent research investigating a central control of exercise regulation. Deception has recently emerged as a common, practical approach to manipulate key variables during exercise. There are a number of ways in which deception interventions have been designed, each intending to gain particular insights into pacing behaviour and performance. Deception methodologies can be conceptualised according to a number of dimensions such as deception timing (prior to or during exercise), presentation frequency (blind, discontinuous or continuous) and type of deception (performance, biofeedback or environmental feedback). However, research evidence on the effects of deception has been perplexing and the use of complex designs and varied methodologies makes it difficult to draw any definitive conclusions about how pacing strategy and performance are affected by deception. This review examines existing research in the area of deception and pacing strategies, and provides a critical appraisal of the different methodological approaches used to date. It is hoped that this analysis will inform the direction and methodology of future investigations in this area by addressing the mechanisms through which deception impacts upon performance and by elucidating the potential application of deception techniques in training and competitive settings

    Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research

    Get PDF
    During the last decade the practice of laboratory-directed protein evolution has become firmly established as a versatile tool in biochemical research by enabling molecular evolution toward desirable phenotypes or detection of novel structure–function interactions. Applications of this technique in the field of photosynthesis research are still in their infancy, but recently first steps have been reported in the directed evolution of the CO2-fixing enzyme Rubisco and its helper protein Rubisco activase. Here we summarize directed protein evolution strategies and review the progressive advances that have been made to develop and apply suitable selection systems for screening mutant forms of these enzymes that improve the fitness of the host organism. The goal of increasing photosynthetic efficiency of plants by improving the kinetics of Rubisco has been a long-term goal scoring modest successes. We discuss how directed evolution methodologies may one day be able to circumvent the problems encountered during this venture

    A cluster randomised trial testing an intervention to improve parents' recognition of their child's weight status: study protocol Health behavior, health promotion and society

    Get PDF
    Background: Parents typically do not recognise their child's weight status accurately according to clinical criteria, and thus may not take appropriate action if their child is overweight. We developed a novel visual intervention designed to improve parental perceptions of child weight status according to clinical criteria for children aged 4-5 and 10-11 years. The Map Me intervention comprises age- and sex-specific body image scales of known body mass index and supporting information about the health risks of childhood overweight. Design: This cluster randomised trial will test the effectiveness of the Map Me intervention. Primary schools will be randomised to: paper-based Map Me; web-based Map Me; no information (control). Parents of reception (4-5 years) and year 6 (10-11 years) children attending the schools will be recruited. The study will work with the National Child Measurement Programme which measures the height and weight of these year groups and provides feedback to parents about their child's weight status. Before receiving the feedback, parents will complete a questionnaire which includes assessment of their perception of their child's weight status and knowledge of the health consequences of childhood overweight. The control group will provide pre-intervention data with assessment soon after recruitment; the intervention groups will provide post-intervention data after access to Map Me for one month. The study will subsequently obtain the child height and weight measurements from the National Child Measurement Programme. Families will be followed-up by the study team at 12 months. The primary outcome is any difference in accuracy in parental perception of child weight status between pre-intervention and post-intervention at one month. The secondary outcomes include differences in parent knowledge, intention to change lifestyle behaviours and/or seek advice or support, perceived control, action planning, coping planning, and child weight status at 12 month follow-up. Discussion: The Map Me tool has potential to make a positive impact on children's health at a population level by introducing it into current intervention programmes to improve accuracy of parental perception of child's weight status. This trial will inform the action of researchers, educators, health professionals and policy makers. Trial registration: Current Controlled Trials ISRCTN91136472. Registered 3 May 2013

    k-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction

    Get PDF
    In the clinical application of genomic data analysis and modeling, a number of factors contribute to the performance of disease classification and clinical outcome prediction. This study focuses on the k-nearest neighbor (KNN) modeling strategy and its clinical use. Although KNN is simple and clinically appealing, large performance variations were found among experienced data analysis teams in the MicroArray Quality Control Phase II (MAQC-II) project. For clinical end points and controls from breast cancer, neuroblastoma and multiple myeloma, we systematically generated 463 320 KNN models by varying feature ranking method, number of features, distance metric, number of neighbors, vote weighting and decision threshold. We identified factors that contribute to the MAQC-II project performance variation, and validated a KNN data analysis protocol using a newly generated clinical data set with 478 neuroblastoma patients. We interpreted the biological and practical significance of the derived KNN models, and compared their performance with existing clinical factors
    corecore