32 research outputs found
A Pathogen Secreted Protein as a Detection Marker for Citrus Huanglongbing.
The citrus industry is facing an unprecedented crisis due to Huanglongbing (HLB, aka citrus greening disease), a bacterial disease associated with the pathogen Candidatus Liberibacter asiaticus (CLas) that affects all commercial varieties. Transmitted by the Asian citrus psyllid (ACP), CLas colonizes citrus phloem, leading to reduced yield and fruit quality, and eventually tree decline and death. Since adequate curative measures are not available, a key step in HLB management is to restrict the spread of the disease by identifying infected trees and removing them in a timely manner. However, uneven distribution of CLas cells in infected trees and the long latency for disease symptom development makes sampling of trees for CLas detection challenging. Here, we report that a CLas secreted protein can be used as a biomarker for detecting HLB infected citrus. Proteins secreted from CLas cells can presumably move along the phloem, beyond the site of ACP inoculation and CLas colonized plant cells, thereby increasing the chance of detecting infected trees. We generated a polyclonal antibody that effectively binds to the secreted protein and developed serological assays that can successfully detect CLas infection. This work demonstrates that antibody-based diagnosis using a CLas secreted protein as the detection marker for infected trees offers a high-throughput and economic approach that complements the approved quantitative polymerase chain reaction-based methods to enhance HLB management programs
Sphingomyelin Functions as a Novel Receptor for Helicobacter pylori VacA
The vacuolating cytotoxin (VacA) of the gastric pathogen Helicobacter pylori binds and enters epithelial cells, ultimately resulting in cellular vacuolation. Several host factors have been reported to be important for VacA function, but none of these have been demonstrated to be essential for toxin binding to the plasma membrane. Thus, the identity of cell surface receptors critical for both toxin binding and function has remained elusive. Here, we identify VacA as the first bacterial virulence factor that exploits the important plasma membrane sphingolipid, sphingomyelin (SM), as a cellular receptor. Depletion of plasma membrane SM with sphingomyelinase inhibited VacA-mediated vacuolation and significantly reduced the sensitivity of HeLa cells, as well as several other cell lines, to VacA. Further analysis revealed that SM is critical for VacA interactions with the plasma membrane. Restoring plasma membrane SM in cells previously depleted of SM was sufficient to rescue both toxin vacuolation activity and plasma membrane binding. VacA association with detergent-resistant membranes was inhibited in cells pretreated with SMase C, indicating the importance of SM for VacA association with lipid raft microdomains. Finally, VacA bound to SM in an in vitro ELISA assay in a manner competitively inhibited by lysenin, a known SM-binding protein. Our results suggest a model where VacA may exploit the capacity of SM to preferentially partition into lipid rafts in order to access the raft-associated cellular machinery previously shown to be required for toxin entry into host cells
A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes
dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe
Chapitre 14: Phytopathogènes et stratégies de contrôle en aquaponie
peer reviewedAmong the diversity of plant diseases occurring in aquaponics, soil-borne
pathogens, such as Fusarium spp., Phytophthora spp. and Pythium spp., are the most
problematic due to their preference for humid/aquatic environment conditions.
Phytophthora spp. and Pythium spp. which belong to the Oomycetes pseudo-fungi
require special attention because of their mobile form of dispersion, the so-called
zoospores that can move freely and actively in liquid water. In coupled aquaponics,
curative methods are still limited because of the possible toxicity of pesticides and
chemical agents for fish and beneficial bacteria (e.g. nitrifying bacteria of the
biofilter). Furthermore, the development of biocontrol agents for aquaponic use is
still at its beginning. Consequently, ways to control the initial infection and the
progression of a disease are mainly based on preventive actions and water physical
treatments. However, suppressive action (suppression) could happen in aquaponic
environment considering recent papers and the suppressive activity already
highlighted in hydroponics. In addition, aquaponic water contains organic matter
that could promote establishment and growth of heterotrophic bacteria in the system
or even improve plant growth and viability directly. With regards to organic
hydroponics (i.e. use of organic fertilisation and organic plant media), these bacteria
could act as antagonist agents or as plant defence elicitors to protect plants from
diseases. In the future, research on the disease suppressive ability of the aquaponic
biotope must be increased, as well as isolation, characterisation and formulation of
microbial plant pathogen antagonists. Finally, a good knowledge in the rapid
identification of pathogens, combined with control methods and diseases monitoring,
as recommended in integrated plant pest management, is the key to an efficient
control of plant diseases in aquaponics.Cos
Food waste valorisation through anaerobic processes: thermal pretreatment or co-digestion?
Anaerobic digestion of Food Wastes (FW) was investigated in batch mesophilic tests. Scope of
this work was to evaluate the efficiency of thermal pretreatment on the solubilisation degree of
FW, alone or mixed with typical Mediterranean agro-wastes as olive husks (OH), and to evaluate
the digestion enhancement potential of pretreatment and co-digestion strategy in terms of methane
and hydrogen conversion rates of FW. Co-digestion was carried out by mixing FW and olive
husks, untreated or thermal pre-treated. Thermal pretreatment was efficient in solubilising the
organic material of FW (soluble COD increase up to 35%) and of the mixture FW and OH (up to
+96%), in particular carbohydrates. After 30 days of digestion, an overall good anaerobic
biodegradability of FW alone was observed, with methane yields in the range 0.350 – 0.592
Nm3/kgVSfed, overshadowing the effect of pretreatment, that affected positively only the
hydrogenogenic phase. Moreover, also co-digestion with OH was a successful option for
encouraging hydrogen conversion rate, which was found to be more than double compared to sole
FW substrate digestion. Nevertheless, thermal pretreatment coupled with high sugars substrates as
OH set the conditions for Maillard reactions occurrence, decreasing the conversion to methane
Biomethane potential of food waste: modeling the effects of mild thermal pretreatment and digestion temperature
<p>In order to enhance anaerobic biodegradability of food waste (FW), thermal pretreatment was applied. The effectiveness in terms of biodegradability extent and process rate improvement was investigated. To this aim, Biomethane Potential tests were carried out under mesophilic and thermophilic conditions. The IWA anaerobic digestion Model 1 (ADM1), a powerful tool for modeling the anaerobic digestion (AD) of different substrates, was implemented to predict the methane production. Disintegration constant (k_dis) and maximum acetate uptake rate (km_ac) were identified as the most sensitive parameters and were calibrated over the observed methane production. Pretreatment improvement was more evident in enhancing parameters related to the process rate, such as solubilization extent (+153%) and disintegration constant (+18%), rather than increasing substrate biodegradability. Thermophilic conditions proved to be effective in speeding up the whole AD process, since all the kinetics were significantly improved (disintegration rate increased up to fivefold). Furthermore, it was demonstrated that, after k_dis and km_ac calibration, default thermophilic ADM1 parameters can be suitable to model FW digestion.</p