88 research outputs found

    Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus)

    Get PDF
    BACKGROUND: Symbioses between invertebrates and prokaryotes are biological systems of particular interest in order to study the evolution of mutualism. The symbioses between the entomopathogenic nematodes Steinernema and their bacterial symbiont Xenorhabdus are very tractable model systems. Previous studies demonstrated (i) a highly specialized relationship between each strain of nematodes and its naturally associated bacterial strain and (ii) that mutualism plays a role in several important life history traits of each partner such as access to insect host resources, dispersal and protection against various biotic and abiotic factors. The goal of the present study was to address the question of the impact of Xenorhabdus symbionts on the progression and outcome of interspecific competition between individuals belonging to different Steinernema species. For this, we monitored experimental interspecific competition between (i) two nematode species: S. carpocapsae and S. scapterisci and (ii) their respective symbionts: X. nematophila and X. innexi within an experimental insect-host (Galleria mellonella). Three conditions of competition between nematodes were tested: (i) infection of insects with aposymbiotic IJs (i.e. without symbiont) of both species (ii) infection of insects with aposymbiotic IJs of both species in presence of variable proportion of their two Xenorhabdus symbionts and (iii) infection of insects with symbiotic IJs (i.e. naturally associated with their symbionts) of both species. RESULTS: We found that both the progression and the outcome of interspecific competition between entomopathogenic nematodes were influenced by their bacterial symbionts. Thus, the results obtained with aposymbiotic nematodes were totally opposite to those obtained with symbiotic nematodes. Moreover, the experimental introduction of different ratios of Xenorhabdus symbionts in the insect-host during competition between Steinernema modified the proportion of each species in the adults and in the global offspring. CONCLUSION: We showed that Xenorhabdus symbionts modified the competition between their Steinernema associates. This suggests that Xenorhabdus not only provides Steinernema with access to food sources but also furnishes new abilities to deal with biotic parameters such as competitors

    Spodoptera frugiperda immune response to the nematobacterial complex Steinernema carpocapsae-Xenorhabdus nematophila

    Get PDF
    [i]Spodoptera frugiperda[/i] immune response to the nematobacterial complex [i]Steinernema carpocapsae-Xenorhabdus nematophila[/i]. Conférences Jacques Monod "Immunologie Intégrative des Insectes : ContrÎle des Infections

    Plastic architecture of bacterial genome revealed by comparative genomics of Photorhabdus variants

    Get PDF
    Background: The phenotypic consequences of large genomic architecture modifications within a clonal bacterial population are rarely evaluated because of the difficulties associated with using molecular approaches in a mixed population. Bacterial variants frequently arise among Photorhabdus luminescens, a nematode-symbiotic and insect-pathogenic bacterium. We therefore studied genome plasticity within Photorhabdus variants. Results: We used a combination of macrorestriction and DNA microarray experiments to perform a comparative genomic study of different P. luminescens TT01 variants. Prolonged culturing of TT01 strain and a genomic variant, collected from the laboratory-maintained symbiotic nematode, generated bacterial lineages composed of primary and secondary phenotypic variants and colonial variants. The primary phenotypic variants exhibit several characteristics that are absent from the secondary forms. We identify substantial plasticity of the genome architecture of some variants, mediated mainly by deletions in the 'flexible' gene pool of the TT01 reference genome and also by genomic amplification. We show that the primary or secondary phenotypic variant status is independent from global genomic architecture and that the bacterial lineages are genomic lineages. We focused on two unusual genomic changes: a deletion at a new recombination hotspot composed of long approximate repeats; and a 275 kilobase single block duplication belonging to a new class of genomic duplications. Conclusion: Our findings demonstrate that major genomic variations occur in Photorhabdus clonal populations. The phenotypic consequences of these genomic changes are cryptic. This study provides insight into the field of bacterial genome architecture and further elucidates the role played by clonal genomic variation in bacterial genome evolutio

    PHYLOGENETIC RELATIONSHIPS OF ENTOMOPATHOGENIC NEMATODES AND THEIR BACTERIAL SYMBIONTS FROM COASTAL AREAS IN LEBANON

    Get PDF
    Entomopathogenic nematodes (EPNs) are parasites of soil-dwelling insects that occur in natural and agricultural soils around the world. The current study focuses on the unexplored coastal zone of Lebanon where soil samples were taken in different sites chosen randomly along the coast like beaches, agricultural and herbaceous fields. In total, 350 soil samples were collected, mainly from the southern part of the country. An integrated approach, combining both traditional (morphological) and molecular methods, was used to characterize entomopathogenic nematode species encountered. Two named-species are added to the EPNs catalog in Lebanon from 4 samples out of the total 350 samples isolated: Heterorhabditis indica, reported for the first time in the country (samples AYAB6 and BRA20) and Steinernema feltiae (samples ANFA5 and EDA1). Furthermore, one undescribed potential entomopathogenic nematode belonging to Oscheius genus was recovered. The symbiotic bacteria from S. feltiae and H. indica were also molecularly identified through the use of five gene fragments recA, gyrB, dnaN, gltX and infB. Phylogenetic relationships of entomopathogenic nematodes and their symbiotic bacteria were inferred by using maximum-likelihood analysis. Soil studies were subsequently carried out in order to assess a possible relationship between soil parameters and their effects on EPNs. Results indicate that sandy texture and moisture are key factors for the presence and survival of EPNs in the soil in Lebanon

    Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse.</p> <p>Results</p> <p>In our experimental procedure, one set of <it>Pocillopora damicornis </it>nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (<it>PdC-Lectin</it>) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (<it>Pdcyst-rich</it>). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress.</p> <p>Conclusion</p> <p>Under thermal stress zooxanthellae photosynthesis leads to intense oxidative stress in the two partners. This endogenous stress can lead to the perception of the symbiont as a toxic partner for the host. Consequently, we propose that the bleaching process is due in part to a decrease in zooxanthellae acquisition and/or sequestration. In addition to a new hypothesis in coral bleaching mechanisms, this study provides promising biomarkers for monitoring coral health.</p

    Evaluation of alternative solvents for improvement of oil extraction from rapeseeds

    Get PDF
    This present study was designed to evaluate the performances of five alternative solvents (alcohols: ethanol, isopropanol and terpenes:ρ-limonene, α-pinene, p-cymene) compared to η-hexane in rapeseed oil extraction. The extracted oils were quantitatively and qualitatively analyzed to compare the solvents’ performances in terms of kinetics, fatty acid compositions, lipid yields, and classes. Moreover, micronutrients in extracted oils were also respectively quantified by high-performance liquid chromatography (HPLC) and gas chromatography (GC). In addition, the interactions between alternative solvents and rapeseed oil have been theoretically studied with the Hansen solubility methodology to get a better comprehension of dissolving mechanisms. The results indicated that pcymene could be the most promising solvent for n-hexane substitution with higher lipid yield and good selectivity, despite the micronutrient contents were relatively low

    Itk Negatively Regulates Induction of  T Cell Proliferation by CD28 Costimulation

    Get PDF
    CD28 is a cell surface molecule that mediates a costimulatory signal crucial for T cell proliferation and lymphokine production. The signal transduction mechanisms of CD28 are not well understood. Itk, a nonreceptor protein tyrosine kinase specifically expressed in T cells and mast cells, has been implicated in the CD28 signaling pathway because of reports that it becomes phosphorylated on tyrosines and associates with CD28 upon cross-linking of the cell surface molecule. To determine whether Itk plays a functional role in CD28 signaling, we compared T cells from Itk-deficient mice and control mice for their responses to CD28 costimulation. T cells defective in Itk were found to be fully competent to respond to costimulation. Whereas the CD3-mediated proliferative response was severely compromised in the absence of Itk, the calcineurin-independent CD28-mediated response was significantly elevated when compared with cells from control animals. The augmented proliferation was not due to increased production of interleukin-2. The results suggest that Itk has distinct roles in the CD3 versus the CD28 signaling pathways. By negatively regulating the amplitude of signaling upon CD28 costimulation, Itk may provide a means for modulating the outcome of T cell activation during development and during antigen-driven immune responses

    An automated system for fast transfer and injection of hyperpolarized solutions

    Get PDF
    Dissolution dynamic nuclear polarization (dDNP) has become a hyperpolarization method of choice for enhancing nuclear magnetic resonance (NMR) signals. Nuclear spins are polarized in solid frozen samples (in a so-called polarizer) that are subsequently dissolved and transferred to an NMR spectrometer for high sensitivity detection. One of the critical challenges of dDNP is that it requires both a fast transfer to limit nuclear spin relaxation losses as well as stability to guarantee high resolution (no bubbles nor turbulences). Here we describe the design, construction and performances of such a transfer and injection system, that features a 5 m/s speed and sub-Hz spectral resolution upon arrival at the detection spot. We demonstrate the use of such a system for inter-magnet distances of up to 10 m

    IgG responses to the gSG6-P1 salivary peptide for evaluating human exposure to Anopheles bites in urban areas of Dakar region, Sénégal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urban malaria can be a serious public health problem in Africa. Human-landing catches of mosquitoes, a standard entomological method to assess human exposure to malaria vector bites, can lack sensitivity in areas where exposure is low. A simple and highly sensitive tool could be a complementary indicator for evaluating malaria exposure in such epidemiological contexts. The human antibody response to the specific <it>Anopheles </it>gSG6-P1 salivary peptide have been described as an adequate tool biomarker for a reliable assessment of human exposure level to <it>Anopheles </it>bites. The aim of this study was to use this biomarker to evaluate the human exposure to <it>Anopheles </it>mosquito bites in urban settings of Dakar (Senegal), one of the largest cities in West Africa, where <it>Anopheles </it>biting rates and malaria transmission are supposed to be low.</p> <p>Methods</p> <p>One cross-sectional study concerning 1,010 (505 households) children (n = 505) and adults (n = 505) living in 16 districts of downtown Dakar and its suburbs was performed from October to December 2008. The IgG responses to gSG6-P1 peptide have been assessed and compared to entomological data obtained in or near the same district.</p> <p>Results</p> <p>Considerable individual variations in anti-gSG6-P1 IgG levels were observed between and within districts. In spite of this individual heterogeneity, the median level of specific IgG and the percentage of immune responders differed significantly between districts. A positive and significant association was observed between the exposure levels to <it>Anopheles gambiae </it>bites, estimated by classical entomological methods, and the median IgG levels or the percentage of immune responders measuring the contact between human populations and <it>Anopheles </it>mosquitoes. Interestingly, immunological parameters seemed to better discriminate the exposure level to <it>Anopheles </it>bites between different exposure groups of districts.</p> <p>Conclusions</p> <p>Specific human IgG responses to gSG6-P1 peptide biomarker represent, at the population and individual levels, a credible new alternative tool to assess accurately the heterogeneity of exposure level to <it>Anopheles </it>bites and malaria risk in low urban transmission areas. The development of such biomarker tool would be particularly relevant for mapping and monitoring malaria risk and for measuring the efficiency of vector control strategies in these specific settings.</p
    • 

    corecore