541 research outputs found

    Propfan experimental data analysis

    Get PDF
    A data reduction method, which is consistent with the performance prediction methods used for analysis of new aircraft designs, is defined and compared to the method currently used by NASA using data obtained from an Ames Res. Center 11 foot transonic wind tunnel test. Pressure and flow visualization data from the Ames test for both the powered straight underwing nacelle, and an unpowered contoured overwing nacelle installation is used to determine the flow phenomena present for a wind mounted turboprop installation. The test data is compared to analytic methods, showing the analytic methods to be suitable for design and analysis of new configurations. The data analysis indicated that designs with zero interference drag levels are achieveable with proper wind and nacelle tailoring. A new overwing contoured nacelle design and a modification to the wing leading edge extension for the current wind tunnel model design are evaluated. Hardware constraints of the current model parts prevent obtaining any significant performance improvement due to a modified nacelle contouring. A new aspect ratio wing design for an up outboard rotation turboprop installation is defined, and an advanced contoured nacelle is provided

    Black Holes Radiate Mainly on the Brane

    Get PDF
    We examine the evaporation of a small black hole on a brane in a world with large extra dimensions. Since the masses of many Kaluza-Klein modes are much smaller than the Hawking temperature of the black hole, it has been claimed that most of the energy is radiated into these modes. We show that this is incorrect. Most of the energy goes into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions.Comment: 11 page

    How Well Do We Know the Orbits of the Outer Planets?

    Full text link
    This paper deals with the problem of astrometric determination of the orbital elements of the outer planets, in particular by assessing the ability of astrometric observations to detect perturbations of the sort expected from the Pioneer effect or other small perturbations to gravity. We also show that while using simplified models of the dynamics can lead to some insights, one must be careful to not over-simplify the issues involved lest one be misled by the analysis onto false paths. Specifically, we show that the current ephemeris of Pluto does not preclude the existence of the Pioneer effect. We show that the orbit of Pluto is simply not well enough characterized at present to make such an assertion. A number of misunderstandings related to these topics have now propagated through the literature and have been used as a basis for drawing conclusions about the dynamics of the solar system. Thus, the objective of this paper is to address these issues. Finally, we offer some comments dealing with the complex topic of model selection and comparison.Comment: Accepted for publication in the Ap

    Classical and Thermodynamic Stability of Black Branes

    Get PDF
    It is argued that many non-extremal black branes exhibit a classical Gregory-Laflamme instability if, and only if, they are locally thermodynamically unstable. For some black branes, the Gregory-Laflamme instability must therefore disappear near extremality. For the black pp-branes of the type II supergravity theories, the Gregory-Laflamme instability disappears near extremality for p=1,2,4p=1,2,4 but persists all the way down to extremality for p=5,6p=5,6 (the black D3-brane is not covered by the analysis of this paper). This implies that the instability also vanishes for the near-extremal black M2 and M5-brane solutions.Comment: 21 pages, LaTeX. v2: Various points clarified, typos corrected and reference adde

    AdS/CFT and the Information Paradox

    Get PDF
    The information paradox in the quantum evolution of black holes is studied within the framework of the AdS/CFT correspondence. The unitarity of the CFT strongly suggests that all information about an initial state that forms a black hole is returned in the Hawking radiation. The CFT dynamics implies an information retention time of order the black hole lifetime. This fact determines many qualitative properties of the non-local effects that must show up in a semi-classical effective theory in the bulk. We argue that no violations of causality are apparent to local observers, but the semi-classical theory in the bulk duplicates degrees of freedom inside and outside the event horizon. Non-local quantum effects are required to eliminate this redundancy. This leads to a breakdown of the usual classical-quantum correspondence principle in Lorentzian black hole spacetimes.Comment: 16 pages, harvmac, reference added, minor correction

    The Gravitational Demise of Cold Degenerate Stars

    Full text link
    We consider the long term fate and evolution of cold degenerate stars under the action of gravity alone. Although such stars cannot emit radiation through the Hawking mechanism, the wave function of the star will contain a small admixture of black hole states. These black hole states will emit radiation and hence the star can lose its mass energy in the long term. We discuss the allowed range of possible degenerate stellar evolution within this framework.Comment: LaTeX, 18 pages, one figure, accepted to Physical Review

    Seminal plasma and prostaglandin E2 up-regulate fibroblast growth factor 2 expression in endometrial adenocarcinoma cells via E-series prostanoid-2 receptor-mediated transactivation of the epidermal growth factor receptor and extracellular signal-regulated kinase pathway

    Get PDF
    We report a multiwavelength (X-ray, ultraviolet/optical/infrared, radio) analysis of the relativistic tidal disruption event candidate Sw J2058+05 from 3 months to 3 yr post-discovery in order to study its properties and compare its behavior with that of Sw J1644+57. Our main results are as follows. (1) The long-term X-ray light curve of Sw J2058+05 shows a remarkably similar trend to that of Sw J1644+57. After a prolonged power-law decay, the X-ray flux drops off rapidly by a factor of 160\gtrsim 160 within a span of Δ\Deltatt/tt \le 0.95. Associating this sudden decline with the transition from super-Eddington to sub-Eddington accretion, we estimate the black hole mass to be in the range of 104610^{4-6} M_{\odot}. (2) We detect rapid (500\lesssim 500 s) X-ray variability before the dropoff, suggesting that, even at late times, the X-rays originate from close to the black hole (ruling out a forward-shock origin). (3) We confirm using HST and VLBA astrometry that the location of the source coincides with the galaxy's center to within 400\lesssim 400 pc (in projection). (4) We modeled Sw J2058+05's ultraviolet/optical/infrared spectral energy distribution with a single-temperature blackbody and find that while the radius remains more or less constant at a value of 63.4±4.563.4 \pm 4.5 AU (1015\sim 10^{15} cm) at all times during the outburst, the blackbody temperature drops significantly from \sim 30,000 K at early times to a value of \sim 15,000 K at late times (before the X-ray dropoff). Our results strengthen Sw J2058+05's interpretation as a tidal disruption event similar to Sw J1644+57.Comment: Replaced with the published version of the manuscrip

    Quantum Back Reaction to asymptotically AdS Black Holes

    Get PDF
    We analyze the effects of the back reaction due to a conformal field theory (CFT) on a black hole spacetime with negative cosmological constant. We study the geometry numerically obtained by taking into account the energy momentum tensor of CFT approximated by a radiation fluid. We find a sequence of configurations without a horizon in thermal equilibrium (CFT stars), followed by a sequence of configurations with a horizon. We discuss the thermodynamic properties of the system and how back reaction effects alter the space-time structure. We also provide an interpretation of the above sequence of solutions in terms of the AdS/CFT correspondence. The dual five-dimensional description is given by the Karch-Randall model, in which a sequence of five-dimensional floating black holes followed by a sequence of brane localized black holes correspond to the above solutions.Comment: 13 pages, 10 figure

    The isolated neutron star X-ray pulsars RX J0420.0–5022 and RX J0806.4–4123 : new X-ray and optical observations

    Get PDF
    We report on the analysis of new X-ray data obtained with XMM-Newton and Chandra from two ROSAT-discovered X-ray dim isolated neutron stars (XDINs). RX J0806.4−4123 was observed with XMM-Newton in April 2003, 2.5 years after the first observation. The EPIC-pn data confirm that this object is an X-ray pulsar with 11.371 s neutron star spin period. The X-ray spectrum is consistent with absorbed black-body emission with a temperature kT = 96 eV and N H = 4 × 10 19 cm −2 without significant changes between the two observations. Four XMM-Newton observations of RX J0420.0−5022 between December 2002 and July 2003 did not confirm the 22.7 s pulsations originally indicated in ROSAT data, but clearly reveal a 3.453 s period. A fit to the X-ray spectrum using an absorbed black-body model yields kT = 45 eV, the lowest value found from the small group of XDINs and N H = 1.0 × 10 20 cm −2. Including a broad absorption line improves the quality of the spectral fits considerably for both objects and may indicate the presence of absorption features similar to those reported from RBS1223, RX J1605.3+3249 and RX J0720.4−3125. For both targets we derive accurate X-ray positions from the Chandra data and present an optical counterpart candidate for RX J0420.0−5022 with B = 26.6 ± 0.3 mag from VLT imaging
    corecore