2,339 research outputs found

    Impact of Glaucoma and Dry Eye on Text-Based Searching

    Get PDF
    PURPOSE: We determine if visual field loss from glaucoma and/or measures of dry eye severity are associated with difficulty searching, as judged by slower search times on a text-based search task. METHODS: Glaucoma patients with bilateral visual field (VF) loss, patients with clinically significant dry eye, and normally-sighted controls were enrolled from the Wilmer Eye Institute clinics. Subjects searched three Yellow Pages excerpts for a specific phone number, and search time was recorded. RESULTS: A total of 50 glaucoma subjects, 40 dry eye subjects, and 45 controls completed study procedures. On average, glaucoma patients exhibited 57% longer search times compared to controls (95% confidence interval [CI], 26%-96%, P 0.08 for Schirmer's testing without anesthesia, corneal fluorescein staining, and tear film breakup time). CONCLUSIONS: Text-based visual search is slower for glaucoma patients with greater levels of VF loss and dry eye patients with greater self-reported visual difficulty, and these difficulties may contribute to decreased quality of life in these groups. TRANSLATIONAL RELEVANCE: Visual search is impaired in glaucoma and dry eye groups compared to controls, highlighting the need for compensatory strategies and tools to assist individuals in overcoming their deficiencies

    Wideband feeding method for full-wave dipole

    Full text link
    © 2017 IEEE. This paper introduces a wide-band feeding method for full-wave dipole antennas. A full-wave dipole is designed to cover the band from 698 MHz to 960 MHz for cellular base station applications. Its matching circuit consists of a laddertype filter design and a quasi-quarter-wavelength resistance transformer. The proposed matching circuit can provide balanced feeding as a balun and has a compact size. The matching circuit is designed and optimized using a circuit theory model and then physically realized using microstrip lines based on full-wave simulation. The simulated reflection coefficient |S11| is < -15 dB across the entire target band, exhibiting a bandwidth of 32%

    Security challenges of small cell as a service in virtualized mobile edge computing environments

    Get PDF
    Research on next-generation 5G wireless networks is currently attracting a lot of attention in both academia and industry. While 5G development and standardization activities are still at their early stage, it is widely acknowledged that 5G systems are going to extensively rely on dense small cell deployments, which would exploit infrastructure and network functions virtualization (NFV), and push the network intelligence towards network edges by embracing the concept of mobile edge computing (MEC). As security will be a fundamental enabling factor of small cell as a service (SCaaS) in 5G networks, we present the most prominent threats and vulnerabilities against a broad range of targets. As far as the related work is concerned, to the best of our knowledge, this paper is the first to investigate security challenges at the intersection of SCaaS, NFV, and MEC. It is also the first paper that proposes a set of criteria to facilitate a clear and effective taxonomy of security challenges of main elements of 5G networks. Our analysis can serve as a staring point towards the development of appropriate 5G security solutions. These will have crucial effect on legal and regulatory frameworks as well as on decisions of businesses, governments, and end-users

    Enhanced detection of early hepatocellular carcinoma by serum SELDI-TOF proteomic signature combined with alpha-fetoprotein marker.

    Get PDF
    BACKGROUND: Biomarkers for accurate diagnosis of early hepatocellular carcinoma (HCC) are limited in number and clinical validation. We applied SELDI-TOF-MS ProteinChip technology to identify serum profile for distinguishing HCC and liver cirrhosis (LC) and to compare the accuracy of SELDI-TOF-MS profile and alpha-fetoprotein (AFP) level in HCC diagnosis. PATIENTS AND METHODS: Serum samples were obtained from 120 HCC and 120 LC patients for biomarker discovery and validation studies. ProteinChip technology was employed for generating SELDI-TOF proteomic features and analyzing serum proteins/peptides. RESULTS: A diagnostic model was established by CART algorithm, which is based on 5 proteomic peaks with m/z values at 3324, 3994, 4665, 4795, and 5152. In the training set, the CART algorithm could differentiate HCC from LC subjects with a sensitivity and specificity of 98% and 95%, respectively. The results were assessed in blind validation using separate cohorts of 60 HCC and 60 LC patients, with an accuracy of 83% for HCC and 92% for LC patients. The diagnostic odd ratio (DOR) indicated that SELDI-TOF proteomic signature could achieve better diagnostic performance than serum AFP level at a cutoff of 20 ng/mL (AFP(20)) (92.72 vs 9.11), particularly superior for early-stage HCC (87% vs 54%). Importantly, a combined use of both tests could enhance the detection of HCC (sensitivity, 95%; specificity, 98%; DOR, 931). CONCLUSION: Serum SELDI-TOF proteomic signature, alone or in combination with AFP marker, promises to be a good tool for early diagnosis and/screening of HCC in at-risk population with liver cirrhosis

    Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate

    Get PDF
    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1optimized) at the 5′ end. The PparoA1optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future

    The CYP2J2 G-50T polymorphism and myocardial infarction in patients with cardiovascular risk profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytochrome P450 (CYP) enzyme 2J2, an epoxygenase predominantly expressed in the heart, metabolises arachidonic acid to biologically active eicosanoids. One of the CYP2J2 products, 11, 12-epoxyeicosatrienoic acid, has several vasoprotective effects. The CYP2J2-G-50T-promotor polymorphism decreases gene expression and is associated with coronary artery disease. This association supports the vascular protective role of CYP-derived eicosanoids in cardiovascular disease. In the present study, we investigated the influence of this polymorphism on survived myocardial infarction in two study groups of patients with on average high cardiovascular risk profile.</p> <p>Methods</p> <p>The CYP2J2 polymorphism was genotyped in two groups of patients that were collected with the same method of clinical data collection. Data from 512 patients with sleep apnoea (group: OSA) and on average high cardiovascular risk profile and from another 488 patients who were admitted for coronary angiography (CAR-group) were evaluated for a potential correlation of the CYP2J2 polymorphism G-50T and a history of myocardial infarction. The G-50T polymorphism of the CYP2J2 gene was genotyped by allele specific restriction and light cycler analysis.</p> <p>Results</p> <p>The T-allele of the polymorphism was found in 111 (11.1%; CAR-group: N = 65, 13.3%; OSA: N = 46, 9.0%). 146 patients had a history of myocardial infarction (CAR: N = 120, 24.6%; OSA: N = 26, 5.1%). Cardiovascular risk factors were equally distributed between the different genotypes of the CYP2J2 G-50T polymorphism. In the total group of 1000 individuals, carriers of the T-allele had significantly more myocardial infarctions compared to carriers of the wild type (T/T or G/T: 21.6%; G/G: 13.7%; p = 0.026, odds ratio 1.73, 95%-CI [1.06–2.83]). In the multivariate logistic regression analysis the odds ratio for a history of myocardial infarction in carriers of the T-allele was 1.611, 95%-CI [0.957–2.731] but this trend was not significant (p = 0.073).</p> <p>Conclusion</p> <p>In presence of other risk factors, the CYP2J2 G-50T failed to show a significant role in the development of myocardial infarction. However, since our result is close to the border of significance, this question should be clarified in larger, prospective studies in the future.</p

    The Phospholipid Scramblases 1 and 4 Are Cellular Receptors for the Secretory Leukocyte Protease Inhibitor and Interact with CD4 at the Plasma Membrane

    Get PDF
    Secretory leukocyte protease inhibitor (SLPI) is secreted by epithelial cells in all the mucosal fluids such as saliva, cervical mucus, as well in the seminal liquid. At the physiological concentrations found in saliva, SLPI has a specific antiviral activity against HIV-1 that is related to the perturbation of the virus entry process at a stage posterior to the interaction of the viral surface glycoprotein with the CD4 receptor. Here, we confirm that recombinant SLPI is able to inhibit HIV-1 infection of primary T lymphocytes, and show that SLPI can also inhibit the transfer of HIV-1 virions from primary monocyte-derived dendritic cells to autologous T lymphocytes. At the molecular level, we show that SLPI is a ligand for the phospholipid scramblase 1 (PLSCR1) and PLSCR4, membrane proteins that are involved in the regulation of the movements of phospholipids between the inner and outer leaflets of the plasma membrane. Interestingly, we reveal that PLSCR1 and PLSCR4 also interact directly with the CD4 receptor at the cell surface of T lymphocytes. We find that the same region of the cytoplasmic domain of PLSCR1 is involved in the binding to CD4 and SLPI. Since SLPI was able to disrupt the association between PLSCR1 and CD4, our data suggest that SLPI inhibits HIV-1 infection by modulating the interaction of the CD4 receptor with PLSCRs. These interactions may constitute new targets for antiviral intervention

    Random-phase approximation and its applications in computational chemistry and materials science

    Full text link
    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012

    Exercise training and selenium or a combined treatment ameliorates aberrant expression of glucose and lactate metabolic proteins in skeletal muscle in a rodent model of diabetes

    Get PDF
    Exercise training (ET) and selenium (SEL) were evaluated either individually or in combination (COMBI) for their effects on expression of glucose (AMPK, PGC-1α, GLUT-4) and lactate metabolic proteins (LDH, MCT-1, MCT-4, COX-IV) in heart and skeletal muscles in a rodent model (Goto-Kakisaki, GK) of diabetes. Forty GK rats either remained sedentary (SED), performed ET, received SEL, (5 µmol·kg body wt-1·day-1) or underwent both ET and SEL treatment for 6 wk. ET alone, SEL alone, or COMBI resulted in a significant lowering of lactate, glucose, and insulin levels as well as a reduction in HOMA-IR and AUC for glucose relative to SED. Additionally, ET alone, SEL alone, or COMBI increased glycogen content and citrate synthase (CS) activities in liver and muscles. However, their effects on glycogen content and CS activity were tissue-specific. In particular, ET alone, SEL alone, or COMBI induced upregulation of glucose (AMPK, PGC-1α, GLUT-4) and lactate (LDH, MCT-1, MCT-4, COX-IV) metabolic proteins relative to SED. However, their effects on glucose and lactate metabolic proteins also appeared to be tissue-specific. It seemed that glucose and lactate metabolic protein expression was not further enhanced with COMBI compared to that of ET alone or SEL alone. These data suggest that ET alone or SEL alone or COMBI represent a practical strategy for ameliorating aberrant expression of glucose and lactate metabolic proteins in diabetic GK rats
    corecore