59 research outputs found
Species-Specific Outcome in the Competition for Nitrogen Between Invasive and Native Tree Seedlings
The outcome of competition for nitrogen (N) between native and invasive tree species is a major concern when considering increasing anthropogenic N deposition. Our study investigated whether three native (i.e., Fagus sylvatica, Quercus robur, and Pinus sylvestris) and two invasive woody species (i.e., Prunus serotina and Robinia pseudoacacia) showed different responses regarding morphological and physiological parameters (i.e., biomass and growth indices, inorganic vs. organic N acquisition strategies, and N allocation to N pools) depending on the identity of the competing species, and whether these responses were mediated by soil N availability. In a greenhouse experiment, tree seedlings were planted either single or in native-invasive competition at low and high soil N availability. We measured inorganic and organic N acquisition using 15N labeling, total biomass, growth indices, as well as total soluble amino acid-N and protein-N levels in the leaves and fine roots of the seedlings. Our results indicate that invasive species have a competitive advantage via high growth rates, whereas native species could avoid competition with invasives via their higher organic N acquisition suggesting a better access to organic soil N sources. Moreover, native species responded to competition with distinct species- and parameter-specific strategies that were partly mediated by soil N availability. Native tree seedlings in general showed a stronger response to invasive P. serotina than R. pseudoacacia, and their strategies to cope with competition reflect the different species’ life history strategies and physiological traits. Considering the responses of native and invasive species, our results suggest that specifically Q. robur seedlings have a competitive advantage over those of R. pseudoacacia but not P. serotina. Furthermore, native and invasive species show stronger responses to higher soil N availability under competition compared to when growing single. In conclusion, our study provides insights into the potential for niche differentiation between native and invasive species by using different N forms available in the soil, the combined effects of increased soil N availability and competition on tree seedling N nutrition, as well as the species-specific nature of competition between native and invasive tree seedlings which could be relevant for forest management strategies
Long-term impact of acid resin waste deposits on soil quality of forest areas II. Biological indicators
In this study, we evaluated the effects of two acid resin deposits on the soil microbiota of forest areas by means of biomass, microbial activity-related estimations and simple biological ratios. The determinations carried out included: total DNA yield, basal respiration, intracellular enzyme activities (dehydrogenase and catalase) and extracellular enzyme activities involved in the cycles of C (-glucosidase and chitinase), N (protease) and P (acid-phosphatase). The calculated ratios were: total DNA/total N; basal respiration/total DNA; dehydrogenase/total DNA and catalase/total DNA. Total DNA yield was used to estimate soil microbial biomass. Results showed that microbial biomass and activity were severely inhibited in the deposits, whilst resin effects on contaminated zones were variable and site-dependant. Correlation analysis showed no clear effect of contaminants on biomass and activities outside the deposits, but a strong interdependence with natural organic matter related parameters such as total N. In contrast, by using simple ratios we could detect more stressful conditions in terms of organic matter turnover and basal metabolism in contaminated areas compared to their uncontaminated counterparts. These results stress that developed ecosystems such as forests can buffer the effects of pollutants and preserve high functionality via natural attenuation mechanisms, but also that acid resins can be toxic to biological targets negatively affecting soil dynamics. Acid resin deposits can therefore act as contaminant sources adversely altering soil processes and reducing the environmental quality of affected areas despite the solid nature of these wastes.Peer reviewe
Urban Dust Microbiome: Impact on Later Atopy and Wheezing
INTRODUCTION: Investigations in urban areas have just begun to
explore how the indoor dust microbiome may affect the
pathogenesis of asthma and allery. We aimed to investigate the
early fungal and bacterial microbiome in house dust with
allergic sensitization and wheezing later in childhood. METHODS:
Individual dust samples from 189 homes of the LISAplus birth
cohort study were collected shortly after birth from living room
floors and profiled for fungal and bacterial microbiome. Fungal
and bacterial diversity was assessed with terminal restriction
fragment length polymorphism (tRFLP) and defined by the Simpson
diversity index. Information on wheezing outcomes and
co-variates until the age of 10 years was obtained by parental
questionnaires. Information on specific allergic sensitization
was available at 6 and 10 years. Logistic regression and General
Estimation Equation (GEE) models were used to examine the
relationship between microbial diversity and health outcomes.
RESULTS: Logistic regression analyses revealed a significantly
reduced risk of developing sensitization to aero-allergens at 6
years and ever wheezing until the age of 10 years for exposure
to higher fungal diversity (adjusted Odds Ratio aOR (95%CI):
0.26 (0.10-0.70)), and 0.42 (0.18-0.96), respectively), in
adjusted analyses. The associations were attenuated for the
longitudinal analyses (GEE) until the age of 10 years. There was
no association between higher exposure to bacterial diversity
and the tested health outcomes. CONCLUSION: Higher early
exposure to fungal diversity might help to prevent from
developing sensitization to aero-allergens in early childhood,
but the reasons for attenuated effects in later childhood
require further prospective studies
Carbon allocation to root exudates is maintained in mature temperate tree species under drought
- Carbon (C) exuded via roots is proposed to increase under drought and facilitate important ecosystem functions. However, it is unknown how exudate quantities relate to the total C budget of a drought-stressed tree, that is, how much of net-C assimilation is allocated to exudation at the tree level.
- We calculated the proportion of daily C assimilation allocated to root exudation during early summer by collecting root exudates from mature Fagus sylvatica and Picea abies exposed to experimental drought, and combining above- and belowground C fluxes with leaf, stem and fine-root surface area.
- Exudation from individual roots increased exponentially with decreasing soil moisture, with the highest increase at the wilting point. Despite c. 50% reduced C assimilation under drought, exudation from fine-root systems was maintained and trees exuded 1.0% (F. sylvatica) to 2.5% (P. abies) of net C into the rhizosphere, increasing the proportion of C allocation to exudates two- to three-fold. Water-limited P. abies released two-thirds of its exudate C into the surface soil, whereas in droughted F. sylvatica it was only one-third.
- Across the entire root system, droughted trees maintained exudation similar to controls, suggesting drought-imposed belowground C investment, which could be beneficial for ecosystem resilience
Seasonal Effects of Extreme Weather Events on Potential Extracellular Enzyme Activities in a Temperate Grassland Soil
Magnitude and timing of precipitation events within the growing season might be decisive for alterations in potential extracellular enzyme activity (PEEA), with consequences for nutrient cycle, and carbon storage in grassland ecosystems. Pattern of PEEA catalyzing major steps of the carbon cycle (β-glucosidase (β-gls), cellobiohydrolase (cel), glucuronidase (glr), and xylosidase (xyl), soil respiration rates and extractable organic carbon were analyzed in response to increased intra-annual precipitation variability in a European, mesic temperate grassland. The field experiment was carried out in three subsequent years by simulating recurrent drought events combined with heavy rainfall either early or late in the growing season (spring or summer) by rainout shelters and irrigation systems. Our data indicated comparable effects of the drought settings independent from the timing of the drought. Both for the simulated spring- and summer drought a decrease of enzymatic activities was observed compared to the control plots, with ß-gls activity after the summer drought being the only exception. However, response pattern toward rewetting differed depending on the seasonal timing of the drought being introduced. After spring drought, a fast recovery to control level was observed for PEEA of ß-gls and xyl, whereas cel and glr activity remained constantly lower. Rewetting after summer drought induced an increase of all enzymatic activities to values even higher compared to the controls. Overall, our data indicate a high resilience of PEEA toward drought and rewetting events in grassland soils, which is modulated by the seasonal timing of the extreme weather events
High resilience of carbon transport in long-term drought-stressed mature Norway spruce trees within 2 weeks after drought release
Under ongoing global climate change, drought periods are predicted to increase in frequency and intensity in the future. Under these circumstances, it is crucial for tree\u27s survival to recover their restricted functionalities quickly after drought release. To elucidate the recovery of carbon (C) transport rates in c. 70-year-old Norway spruce (Picea abies [L.] KARST.) after 5 years of recurrent summer droughts, we conducted a continuous whole-tree C labeling experiment in parallel with watering. We determined the arrival time of current photoassimilates in major C sinks by tracing the C label in stem and soil CO efflux, and tips of living fine roots. In the first week after watering, aboveground C transport rates (CTR) from crown to trunk base were still 50% lower in previously drought-stressed trees (0.16 ± 0.01 m h) compared to controls (0.30 ± 0.06 m h). Conversely, CTR below ground, that is, from the trunk base to soil CO efflux were already similar between treatments (c. 0.03 m h). Two weeks after watering, aboveground C transport of previously drought-stressed trees recovered to the level of the controls. Furthermore, regrowth of water-absorbing fine roots upon watering was supported by faster incorporation of C label in previously drought-stressed (within 12 ± 10 h upon arrival at trunk base) compared to control trees (73 ± 10 h). Thus, the whole-tree C transport system from the crown to soil CO efflux fully recovered within 2 weeks after drought release, and hence showed high resilience to recurrent summer droughts in mature Norway spruce forests. This high resilience of the C transport system is an important prerequisite for the recovery of other tree functionalities and productivity
Winter warming is ecologically more relevant than summer warming in a cool-temperate grassland
Climate change affects all seasons, but warming is more pronounced in winter than summer at mid- and high latitudes. Winter warming can have profound ecological effects, which are rarely compared to the effects of summer warming, and causal explanations are not well established. We compared mild aboveground infrared warming in winter to warming in summer in a semi-natural, cool-temperate grassland in Germany for four years. Aboveground plant biomass increased following winter warming (+18%) and was unaffected by summer warming. Winter warming affected the composition of the plant community more than summer warming, favoring productive species. Winter warming increased soil respiration more than summer warming. Prolonged growing seasons and changes in plant-community composition accounted for the increased aboveground biomass production. Winter warming stimulated ecological processes, despite causing frost damage to plant roots and microorganisms during an extremely cold period when warming reduced the thermal insulation provided by snow. Future warming beyond such intermittent frosts may therefore further increase the accelerating effects of winter warming on ecological processe
Dynamics of initial carbon allocation after drought release in mature Norway spruce—Increased belowground allocation of current photoassimilates covers only half of the carbon used for fine‐root growth
After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (C) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree C labeling in parallel with controlled watering after 5 years of experimental summer drought. The fate of C to growth and CO efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of C to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of C while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to C, stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity
Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe
Soil microbiome has a pivotal role in ecosystem functioning, yet little is known about its build-up from local to regional scales. In a multi-year regional-scale survey involving 1251 plots and long-read third-generation sequencing, we found that soil pH has the strongest effect on the diversity of fungi and its multiple taxonomic and functional groups. The pH effects were typically unimodal, usually both direct and indirect through tree species, soil nutrients or mold abundance. Individual tree species, particularlyPinus sylvestris,Picea abies, andPopulus x wettsteinii, and overall ectomycorrhizal plant proportion had relatively stronger effects on the diversity of biotrophic fungi than saprotrophic fungi. We found strong temporal sampling and investigator biases for the abundance of molds, but generally all spatial, temporal and microclimatic effects were weak. Richness of fungi and several functional groups was highest in woodlands and around ruins of buildings but lowest in bogs, with marked group-specific trends. In contrast to our expectations, diversity of soil fungi tended to be higher in forest island habitats potentially due to the edge effect, but fungal richness declined with island distance and in response to forest fragmentation. Virgin forests supported somewhat higher fungal diversity than old non-pristine forests, but there were no differences in richness between natural and anthropogenic habitats such as parks and coppiced gardens. Diversity of most fungal groups suffered from management of seminatural woodlands and parks and thinning of forests, but especially for forests the results depended on fungal group and time since partial harvesting. We conclude that the positive effects of tree diversity on overall fungal richness represent a combined niche effect of soil properties and intimate associations
Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma
Background: The enhancer of zeste homolog 2 (EZH2) gene exerts oncogene-like activities and its (over)expression has been linked to several human malignancies. Here, we studied a possible association between EZH2 expression and prognosis in patients with renal cell carcinoma (RCC). Methods: EZH2 protein expression in RCC specimens was analyzed by immunohistochemistry using a tissue microarray (TMA) containing RCC tumor tissue and corresponding normal tissue samples of 520 patients. For immunohistochemical assessment of EZH2 expression, nuclear staining quantity was evaluated using a semiquantitative score. The effect of EZH2 expression on cancer specific survival (CSS) was assessed by univariate and multivariate Cox regression analyses. Results: During follow-up, 147 patients (28%) had died of their disease, median follow-up of patients still alive was 6.0 years (range 0 - 16.1 years). EZH2 nuclear staining was present in tumor cores of 411 (79%) patients. A multivariate Cox regression analysis revealed that high nuclear EZH2 expression was an independent predictor of poor CSS (>25-50% vs. 0%: HR 2.72, p = 0.025) in patients suffering from non-metastatic RCC. Apart from high nuclear EZH2 expression, tumor stage and Fuhrman's grading emerged as significant prognostic markers. In metastatic disease, nuclear EZH2 expression and histopathological subtype were independent predictive parameters of poor CSS (EZH2: 1-5%: HR 2.63, p = 0.043, >5-25%: HR 3.35, p = 0.013, >25%-50%: HR 4.92, p = 0.003, all compared to 0%: HR 0.36, p = 0.025, respectively). Conclusions: This study defines EZH2 as a powerful independent unfavourable prognostic marker of CSS in patients with metastatic and non-metastatic RCC
- …