7,580 research outputs found
Nitrogen and noble gases in the 71501 bulk soil and ilmenite as records of the solar wind exposure: Which is correct?
The N determination in mg sized mineral separates from lunar soils by static mass spectrometry is an experimental break-through likely to contribute to the deciphering of the records left in the mineral grains by the exposure to the solar wind. In this discussion some comparisons of the results of N and noble gas analyses of the 71501 bulk soil and an ilmenite separate thereof are focussed on. Conclusions from noble gas data obtained on mineral separates from some 20 soils are summarized in a companion paper and are also discussed herein
SCR and GCR exposure ages of plagioclase grains from lunar soil
The concentrations of solar wind implanted Ar-36 in mineral grains extracted from lunar soils show that they were exposed to the solar wind on the lunar surface for an integrated time of 10E4 to 10E5 years. From the bulk soil 61501 plagioclase separates of 8 grain size ranges was prepared. The depletion of the implanted gases was achieved by etching aliquot samples of 4 grain sizes to various degrees. The experimental results pertinent to the present discussion are: The spallogenic Ne is, as in most plagioclases from lunar soils, affected by diffusive losses and of no use. The Ar-36 of solar wind origin amounts to (2030 + or - 100) x 10E-8 ccSTP/g in the 150 to 200 mm size fraction and shows that these grains were exposed to the solar wind for at least 10,000 years. The Ne-21/Ne-22 ratio of the spallogenic Ne is 0.75 + or - 0.01 and in very good agreement with the value of this ratio in a plagioclase separate from rock 76535. This rock has had a simple exposure history and its plagioclases have a chemical composition quite similar to those studied. In addition to the noble gases, the heavy particle tracks in an aliquot of the 150 to 200 mm plagioclase separate were investigated and found 92% of the grains to contain more than 10E8 tracks/sq cm. This corresponds to a mean track density of (5 + or - 1) x 10E8 tracks/sq cm. The exploration of the exposure history of the plagioclase separates from the soil 61501 do not contradict the model for the regolith dynamics but also fail to prove it
Photon-Photon and Photon-Hadron Physics at Relativistic Heavy Ion Colliders
Due to the coherence of all the protons in a nucleus, there are very strong
electromagnetic fields of short duration in relativistic heavy ion collisions.
They give rise to quasireal photon-photon and photon-nucleus collisions with a
large flux. RHIC will begin its experimental program this year and such types
of collisions will be studied experimentally at the STAR detector. RHIC will
have the highest flux of (quasireal) photons up to now in the GeV region. At
the LHC the invariant mass range available in gamma-gamma-interactions will be
of the order of 100 GeV, i.e., in the range currently available at LEP2, but
with a higher gamma-gamma-luminosity. Therefore one has there also the
potential to study new physics. (Quasireal) photon-hadron (i.e.,
photon-nucleus) interactions can be studied as well, similar to HERA, at higher
invariant masses. Vector mesons can be produced coherently through
photon-Pomeron and photon-meson interactions in exclusive reactions such as A+A
-> A+A+V, where A is the heavy ion and V=rho,omega,phi or J/Psi.Comment: 6 pages, to be published in the proceedings of the Photon'99
conferenc
Hadron collider limits on anomalous couplings
A next-to-leading log calculation of the reactions and
is presented including a tri-boson
gauge coupling from non-Standard Model contributions. Two approaches are made
for comparison. The first approach considers the tri-boson coupling
as being uniquely fixed by tree level unitarity at high energies to its
Standard Model form and, consequently, suppresses the non-Standard Model
contributions with form factors. The second approach is to ignore such
considerations and calculate the contributions to non-Standard Model tri-boson
gauge couplings without such suppressions. It is found that at Tevatron
energies, the two approaches do not differ much in quantitative results, while
at Large Hadron Collider (LHC) energies the two approaches give significantly
different predictions for production rates. At the Tevatron and LHC, however,
the sensitivity limits on the anomalous coupling of are too weak to
usefully constrain parameters in effective Lagrangian models.Comment: Revtex 23 pages + 8 figures, UIOWA-94-1
Production of QED pairs at small impact parameter in relativistic heavy ion collisions
The STAR collaboration at RHIC is measuring the production of
electron-positron pairs at small impact parameters, larger than but already
close to the range, where the ions interact strongly with each other. We
calculate the total cross section, as well as, differential distributions of
the pair production process with the electromagnetic excitation of both ions in
a semiclassical approach and within a lowest order QED calculation. We compare
the distribution of electron and positron with the one coming from the cross
section calculation without restriction on impact parameter. Finally we give an
outlook of possible results at the LHC.Comment: 15 pages, 8 figure
NIEL Dose Dependence for Solar Cells Irradiated with Electrons and Protons
The investigation of solar cells degradation and the prediction of its
end-of-life performance is of primary importance in the preparation of a space
mission. In the present work, we investigate the reduction of solar-cells'
maximum power resulting from irradiations with electrons and protons. Both GaAs
single junction and GaInP/GaAs/Ge triple junction solar cells were studied. The
results obtained indicate how i) the dominant radiation damaging mechanism is
due to atomic displacements, ii) the relative maximum power degradation is
almost independent of the type of incoming particle, i.e., iii) to a first
approximation, the fitted semi-empirical function expressing the decrease of
maximum power depends only on the absorbed NIEL dose, and iv) the actual
displacement threshold energy value (Ed=21 eV) accounts for annealing
treatments, mostly due to self-annealing induced effects. Thus, for a given
type of solar cell, a unique maximum power degradation curve can be determined
as a function of the absorbed NIEL dose. The latter expression allows one to
predict the performance of those solar cells in space radiation environment.Comment: To appear on the Proceedings of the 13th ICATPP Conference on
Astroparticle, Particle, Space Physics and Detectors for Physics
Applications, Villa Olmo (Como, Italy), 23--27 October, 2013, to be published
by World Scientific (Singapore
Where the law of the invisible hand fails : applying the perspectives of an economic tourist as he ventures into the heart of antediluvian economics
Abstract: Value is subjective. Pricing structures are assumed to be an expression of value, but the problem is that they do not really express a universal value. While tourists may be armed with a bundle of local currency and a supply of sunscreen to protect themselves from the elements of nature, it’s really the established institutions within the territory that pose the real threat to the sanity of the decision maker. This paper examines the role of ‘Information’ in an institutional framework with the aim of exploring the challenges that an economic tourist would be confronted with when attempting to determine the value of a commodity. This within a market which cannot be determined using typical market fundamentals. While an archetypal tourist would be capable of following a road map that may confirm his belief in the markets. However, his own interpretation of the information on that map will be challenged as he ventures further into the world of an antediluvian market where low levels of competition exist and the interaction between supply and demand would best be described as unstable. The problems that modern day economic tourists would face is greatly increased as they are confronted by new and unpredictable institutional information. This information has been developed over centuries within a culturally biased informational context regarding commodities and products in different markets. The real value of a product in an antediluvian economy is determined by the ‘value of Information’ held by the institution within that economy which would serve as a regulator of ‘value’. While value is subjective, the price set within the antediluvian economy may echo issues such as political, social and economic conditions, not reflected in the price, and thus create a flood of misperception to the aspiring tourists
Function-Orientated Structural Analysis of the Proximal Human Femur
In his model of the biomechanics of the proximal human femur, Friedrich Pauwels assumes a resultant force acting on the femoral head that is created by the partial body weight and the force of the abductor muscles inserting at the greater trochanter. This model suggests a tensile force in the region of the greater trochanter. An exact examination of the muscle insertions at the greater trochanter resulted in a contrasting hypothesis assuming a local compression stress in the region of the greater trochanter. The aim of this study was to examine which hypothesis is favored by the internal architecture of the proximal femur. Based on the architectural software Allplan (R), we performed an extended analysis of the trabecular structure within the proximal femur using CT scans of 10 human cadaver femora altogether. According to our results, both the medial and the trochanteric trabecular systems are orientated approximately perpendicular to the arcuate trabecular system {[}angles between systems ranging from 84.6 to 93.0 degrees (mean angle 90.7 degrees) and from 80.9 to 86.5 degrees, (mean angle 84.9 degrees), respectively]; furthermore, the medial trabecular system is orientated perpendicular to the epiphysis of the femoral head (mean of angles: 94.7). The biomechanical interpretation of these results strongly supports the idea of compressive stress in the region of the greater trochanter and makes a predominant tensile force of the abductor muscles highly unlikely. Copyright (C) 2009 S. Karger AG, Base
Effective-range approach and scaling laws for electromagnetic strength in neutron-halo nuclei
We study low-lying multipole strength in neutron-halo nuclei. The strength
depends only on a few low-energy constants: the neutron separation energy, the
asymptotic normalization coefficient of the bound state wave function, and the
scattering length that contains the information on the interaction in the
continuum. The shape of the transition probability shows a characteristic
dependence on few scaling parameters and the angular momenta. The total E1
strength is related to the root-mean-square radius of the neutron wave function
in the ground state and shows corresponding scaling properties. We apply our
approach to the E1 strength distribution of 11Be.Comment: 4 pages, 1 figure (modified), additional table, extended discussion
of example, accepted for publication in Phys. Rev. Let
- …