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The STAR Collaboration at the Relativistic Heavy Ion Collider is measuring the production of electron-
positron pairs at small impact parameters, larger than but already close to the range, where the ions interact
strongly with each other. We calculate the cross section relevant for the STAR experimental setup, as well as,
differential distributions of the pair production process with the electromagnetic excitation of both ions in a
semiclassical approach and within a lowest order QED calculation. We compare the distribution of electron and
positron with the one coming from the cross section calculation without tagging for the excitation of the two
ions. Finally we give an outlook of possible results at the LHC.
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I. INTRODUCTION

Pair production in relativistic heavy ion collisions has at-
tracted interest in the past mainly due to the fact that the
strong fields allow for multiple pairs to be produced. At im-
pact parameter of the order of twice the nuclear radius, but
still larger than this, so that the two ions do not interact
hadronically with each other(that is, the regime of the so-
called “ultraperipheral collisions” UPC), the total pair pro-
duction multiplicity is found to be about 1.5 for Au-Au col-
lisions at the Relativistic Heavy Ion Collider RHIC and
about 3.9 for Pb-Pb collisions at the LHC. These results are
based on a lowest order QED calculation[1] and one might
suspect that at these small impact parameters the strong
fields of the two ions do lead to higher order corrections.

Therefore it is of interest to measure electron-positron
pairs produced in such collisions and compare their distribu-
tion with theoretical predictions, e.g., in lowest order QED.
The STAR Collaboration has recently measurede+e− pairs in
collisions, which were selected by a trigger, looking for the
simultaneous excitation of the two ions(mainly to the giant
dipole resonance GDR) in addition to the pair production
process[2–4], see Fig. 1. Such an event is characterized by
the subsequent emission of one or only a few neutrons,
which are then detected in the forward ZDC(zero degree
calorimeter). This tagging was first proposed in order to
study vector meson production[5–7]. Mutual excitation of
the two ions is also used for the luminosity measurement at
RHIC [8,9].

As the average impact parameter in such collisions is only
about[10]

b̄ =
E d2bbPsbd

E d2bPsbd
<

8Ra

3
< 19 fm, s1d

one may expect strong field effects to be present for the
pairs.

Due to the design of the STAR detector only electrons and
positrons having a transverse momentumpt.65 MeV/c and
being emitted with a rapidityuy u ,1.15 can be detected. As
most of the pairs produced in ultraperipheral collisions
(UPCs) are emitted with energies of the order of a fewmec

2

and at small angles, such a measurement can only look at the
tails of the distribution of the pairs. Even this momentum
range was only possible using a lowered magnetic field in
the STAR detector.
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FIG. 1. The pair production together with the electromagnetic
excitation of both ions, predominantly to the giant dipole resonance
(GDR) is shown as one typical Feynman diagram. The process in
lowest order involves at least the exchange of four photons(many
more “soft Coulomb photons” are exchanged as well). Due to this
the process predominantly occurs at small impact parameter, where
the electromagnetic fields are strong, in contrast to the “untagged
cross section”(without electromagnetic excitation of the ions),
which has contributions coming also from large impact parameters.
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One approach to the calculation of this process is the use
of the impact parameter dependent equivalent photon ap-
proximation [11–14]. The additional electromagnetic pro-
cesses are easily incorporated in this semiclassical approach
and the cross section can be expressed as

d6se+e−,2GDR

d3p+d3p−

=E d2bPGDR
2 sbd

d4L

d2bdv1dv2

d6sgg→e+,e−sv1,v2d

d3p+d3p−
,

s2d

where sgg→e+,e− denotes the cross section for real photons
andd4L /d2bdv1dv2 the impact parameter dependent photon-
photon luminosity(for the details of the photon-photon lu-
minosity, see Sec. 3 of Ref.[15] and Sec. 2.7 of Ref.[16]
and references therein). One difficulty in this approach is the
correct choice of the cutoff parameter present in the expres-
sion for the photon spectrum. This is especially difficult due
to the smallness ofme, which is much smaller than the “usual
cutoff” imposed on the maximal transverse momentum of the
photon from the elastic form factor of the ion, which is given
by 1/RA<80 MeV. For a discussion see Ref.[16], espe-
cially Chap. 7, beginning of p. 412. It was found that the
total cross section for electron-positron pair production
(given by a full QED calculation in lowest order[17] or
alternatively by the approximate analytic expression of Ra-
cah [18], which coincide within the numerical accuracy of
the calculations) is only reproduced with a cutoff chosen
aroundme. On the other hand it was also found that neither a
choice ofme nor of RA is able to reproduce the total impact
parameter dependent probabilityPsbd at impact parameter
smaller than the Compton wavelengthlc=386 fm from an
exact QED calculation[1]. For a discussion about the choice
of the cutoff parameter see, e.g., Ref.[19]. In addition, in the
usual semiclassical approach the transverse momentum dis-
tribution of the photons is integrated over. In order to get, for
example, the transverse momentum distribution of the pair,
one needs to take this momentum distribution into account to
get the correct final result. For a possible approach taking
this into account from first principles see Refs.[20,21]. Due
to this it is of interest to do an exact calculation of this
process in lowest order QED in order to compare with ex-
perimental results, as well as, in order to understand whether
the equivalent photon approximation is a valid approxima-
tion in this case.

In Sec. II we show how our calculation is done in lowest
order QED and in the semiclassical approximation. This is
then used in Sec. III to calculate cross sections and differen-
tial distributions for RHIC and also for possible LHC condi-
tions. The comparison with the experimental results has been
done in the meantime and will be presented by the STAR
Collaboration in another publication[22].

II. CALCULATION OF PAIR PRODUCTION
AND NUCLEAR EXCITATION IN LOWEST ORDER QED

The STAR experiment at RHIC measures the pair produc-
tion cross section together with the double electromagnetic

excitation in both ions, see Fig. 1. In order to incorporate the
experimental conditions in the theoretical calculation, it is
most appropriate to work in the semiclassical approach. Us-
ing the fact, that in this approach the probabilities of the
individual processes factorize and are given by the product
of the individual probabilities(for a theoretical description of
this approach, see Ref.[10]) we can write the cross section
for this process as

d6se+e−,2GDR

d3p+d3p−
= 2pE

bmin

`

bdbPGDR
2 sbd

d6Psbd
d3p+d3p−

. s3d

The minimum impact parameter was chosen to bebmin
=2Ra<14 fm, where we assume the nuclei to touch, that is,
interact hadronically with each other. The use of the semi-
classical description in this case is not only justified due to
the strong Coulomb interaction between the two ions(lead-
ing to a large number of “soft” Coulomb photons exchanged
between them), but also simplifies the calculation of this
higher order process(tagged process: pair production plus
two GDR excitation processes) considerably.

Following Ref.[23] the probability for GDR excitation in
one ion is to a good approximation given as

PGDRsbd = S/b2, s4d

with

S=
2a2Z3N

AmNv
< 5.453 10−5Z3NA−2/3 fm2, s5d

wheremN denotes the nucleon mass, and the neutron, proton,
and mass number of the ions areN,Z, and A, respectively
(we consider only symmetric collisions here, the calculation
can trivially be extended to incorporate also asymmetric sys-
tems). The excitation probability is inversely proportional to
the energyvs<80 MeV A−1/3d of the GDR state. Neutrons
are not only emitted from the GDR excitation but are also
coming from higher excited states[8,24,25]. These can be
taken into account approximately by increasingS accord-
ingly. As this does not change the 1/b2 behavior for the small
impact parameter, we are interested in, and only leads to a
rescaling of the cross section, not the form of the differential
distributions, we have used in our calculation the more
simple value ofS in Eq. (5). Of course one needs then to
include in addition the different decay channels into one,
two, etc., neutrons[26–28], as well as, the fact that the prob-
ability for GDR excitation is already quite large(about 0.5
for bmin) so that multiphoton excitation mechanisms need to
be included as well. Assuming a Poisson distribution for the
different (independent) excitation processes, one would need
to replacePGDRsbd then with [24]

PA→A*sbd = 1 − expfPGDRsbdg. s6d

One sees that the multiphoton excitation tends to reduce
again the probability(it has to stay below the unitarity limit
of 1). In the Appendix we show how a more complexb
dependence than a simple 1/b2 for PGDRsbd can be calculated
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within the same approach. Therefore an improved calculation
can be done in this way. On the other hand for the current
experimental accuracy the simplified approach seems to be
appropriate.

With this the cross section for pair production together
with the GDR excitation of both ions is given by

d6se+e−,2GDR

d3p+d3p−
= 2pE

bmin

`

bdbPGDR
2 sbd2p

3E qdq
d6P̂sqd

d3p+d3p−
J0sqbd

= s2pd2S2E qdq
d6P̂sqd

d3p+d3p−
E

bmin

`

bdb
J0sqbd

b4

= s2pd2S2E qdq
d6P̂sqd

d3p+d3p−
E

bmin

` db

b3 J0sqbd,

s7d

where we have introduced the two-dimensional Fourier
transform of the impact parameter dependent probability for
pair productiond6Psbd /d3p+d3p− as

d6Psbd
d3p+d3p−

=E d2q expsiqWbWd
d6P̂sqWd

d3p+d3p−

= 2pE qdq
d6P̂sqd

d3p+d3p−
J0sqbd. s8d

We rewrite the integral overb in dimensionless units as

E
bmin

` db

b3 J0sqbd = q2E
qbmin

` dx

x3 J0sxd = :q2I3sqbmind. s9d

Following the derivation of Refs.[1,17], one can calculate

the two-dimensional Fourier transform ofd6PsbWd /d3p+d3p−

in lowest order QED. The two Feynman diagrams for this
process in the semiclassical approximation are shown in Fig.
2. One gets the differential probability as

d6P̂sqd
d3p+d3p−

= sZad4 4

b2g4

1

s2pd62e+2e−
E d2q1fN0N1N3N4g−1

3 Trhsp”− + mdfN2D
−1u” s1dsp”− − q”1 + mdu” s2d + N2X

−1u” s2d

3sq”1 − p”+ + mdu” s1dgsp”+ − mdfN5D
−1u” s2dsp”− − q”18

+ mdu” s1d + N5X
−1u” s1dsq”18 − p”+ + mdu” s2dgj, s10d

with

N0 = − q1
2, N1 = − fq1

2 − sp+ + p−dg2,

N3 = − sq1 + qd2, N4 = − fq1 + sq − p+ − p−dg2,

N2D = − sq1 − p−d2 + m2, N2X = − sq1 − p+d2 + m2,

N5D = − fq1 + sq − p−dg2 + m2,

N5X = − fq1 + sq − p+dg2 + m2,

with the longitudinal components ofq1 given byq10= 1
2fse+

+e−d+bsp+z+p−zdg, q1z=f1/2bgfse++e−d+bsp+z+p−zdg
=s1/bdq10, and us1,2d=gs1,0,0, ±bd are the four velocities
of the two ions,g andb are the Lorentz factor and velocity
of each ion in the center-of-mass frame. We have included in
addition a nuclear form factorFsqd. We choose for ease of
computation in our case a monopole form factor of the form

Fsqd =
L2

L2 − q2 =
L2

L2 + Q2 , s11d

whereL2=6/kR2l is set to about 80 MeV in order to repro-
duce the rms radius of the ion. This leads in the termsN0

−1,
N1

−1, N3
−1, and N4

−1 to a replacement of the term 1/q2 by
Fsqd /q2. The integration overd2q1 can be done analytically,
using the usual tricks for Feynman integrations in two di-
mensions. For details of this, we refer the reader to Ref.[1].

The integralI3sz=qbmind in Eq. (9) can be solved analyti-
cally and calculated easily, as is shown in the Appendix.

Finally we make the integral overdq dimensionless to get

d6se+e−,2GDR

d3p+d3p−
= s2pd2 S2

bmin
4 E z3dz

d6P̂S z

bmin
D

d3p+d3p−
Iszd. s12d

For the “untagged differential cross section”(that is with-
out triggering on the additional electromagnetic excitations

of the ions), we integrate overbW without the factorPGDR
2 sbd

in Eq. (3). As the contribution coming fromb,bmin is small
in this case, we have extended(only here) the integration
over all b.

FIG. 2. The two Feynman diagrams contributing to pair produc-
tion in lowest order QED are shown. The crosses denote the cou-
pling to the(external) Coulomb field of one of the ions.
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d6se+e−

d3p+d3p−
=E d2b

d6Psbd
d3p+d3p−

=E d2bd2q
d6P̂sqd

d3p+d3p−
expsiqWbWd

= s2pd2E d2qdsqWd
d6P̂sqd

d3p+d3p−

= s2pd2 d6P̂s0d
d3p+d3p−

. s13d

This approach was pursued in Ref.[17] and differential and
integrated cross sections were calculated. For the untagged
cross sections we do not take a nuclear form factor of the two
ions into account, as pair productions occurs predominantly
at large impact parameter and for smallq2 of the two pho-
tons.

Whereas for the untagged cross section only the value of

P̂sqd for q=0 is needed, here our expression, Eq.(12), is a
folding over a range ofq given in terms of 1/bmin. In order to
compare the differential distributions in both the tagged and
in the untagged case we have also made calculations of the
untagged cross section with the same kinematical restrictions
as in the case with GDR excitations.

The expression of Eq.(12) is in a form, which can be
evaluated using a Monte Carlo integration for both the inte-
gration overz, as well as, the six-dimensional integration
over p+ and p− at the same time. For this we have used
VEGAS [29]. Both Psqd and J0

int are oscillatory functions,
having both positive and negative values, which could lead
to cancellations. Looking atz3Iszd together with the result of
Psz/bmind one sees that the integrand falls off for largez, that
is, for largeq. It is found that the main contribution comes
from the region aroundz=2 and that the contribution from
the negative part at largerz are suppressed. The integration
will have positive and negative contributions but the cancel-
lations between them are not severe. With the help of VE-
GAS we can get the integrated cross section and also differ-
ential cross sections by binning the differential results.

III. RESULTS

We have made calculations of the cross section and of
differential distributions of the electron, the positron and the
pair including the experimental restrictions at STAR. The
integration overb (or equivalentlyq) is incorporated into the
Monte Carlo integration. Another strategy would be to cal-

culate d6P̂sqd /d3p+d3p− for different values ofq and fixed
values ofp+,p− and do a Bessel transform in each case. For

the integrated cross section, that is,P̂sqd, this can be done
and was done as an independent check of our approach. To
obtain differential cross sections, this approach is rather
cumbersome.

In a first step, we have calculated the total cross section
(with the kinematical conditions of the STAR experiment) as
a function ofbmin, the minimum impact parameter, by using
three different approaches: We can calculatePsbd directly for

the pair production process and integrate numerically overb.

Second we can start fromP̂sqd directly and do the integration
over q numerically via the Fourier transformed ofPGDRsbd,
that is, usingIszd. Finally we have done the calculation with
the integration overq, that is, z, directly with the Monte
Carlo integration. In all three cases we have restricted the
phase-space integration over the momenta of electron and
positron according to the experimental conditions of STAR:
pt.60 MeV/c anduy u ,1.15 for each lepton. The results are
shown in Fig 3. The lines correspond to calculations with
and without a monopole form factor for the nucleus, showing
that the incorporation of a form factor is important. All three
approaches agree quite well with each other, showing that
our approach is working well.

From this we get an integrated cross section for Au-Au
collisions at RHIC, including the restrictions
upt u .60 MeV/c, uy u ,1.15 of 2.30, 1.76, 1.43 mb, forbmin
=13,14, and 15 fm, respectively. In addition we have calcu-
lated a number of differential distributions, which were also
studied at STAR. The cross section as a function of the trans-
verse momenta and energy distribution of the electron and
positron are shown in Fig. 4. In lowest order QED the dis-
tribution of electron and positron are identical to each other.
The difference between the two distributions can therefore be
seen as a measure of the accuracy the Monte Carlo integra-
tion. One can look also at properties of the produced pair:
The transverse momentum and the invariant mass of the pair
are shown in Fig. 5. We have not shown the rapidity distri-
bution, which we found to be more or less flat over the
allowed range. In all four diagrams we show also the differ-

FIG. 3. The tagged cross section including kinematical restric-
tions of the STAR experiment are shown as a function of the mini-
mal allowed impact parameterbmin. Calculations with and without a
form factor for the nucleus are shown. The lines were calculated by
calculatingPsbd first and integrating then overb. These lines are in
perfect agreement with a similar approach, wherePsqd is calculated
first and then integrated overq. The circles correspond to the results
of our Monte Carlo approach, where, as explained in the text, both
the integration overq and overp+ andp− are done within the Monte
Carlo integration routine.
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ential distributions of the untagged cross section. The total
untagged cross section(within the STAR acceptance range)
was found to be 0.322 b. We have rescaled therefore the
untagged cross section by a factor of 183, so that the inte-
grated cross section is the same as in the tagged case and
their shape can be better compared. We see that the trans-
verse momentum distribution and the energy distribution of
the individual leptons are more or less identical in shape. The
same is also true for the invariant mass distribution, with the
only exception that the “tail” at low invariant masses is
higher for the untagged distributions. The biggest effect is
seen in the transverse momentum distribution of the pair.
Here we also expect the effect of the small impact parameter
(corresponding to larger transverse momenta of the photons)
to be largest. The slower fall-off at larger transverse mo-
menta is most probably due to the fact that no form factor
was used in the calculation of this cross section, which
should be visible atPt.80 MeV/c. In order to investigate
the effect of the nuclear form factor and in order to under-
stand the large difference between the cross section with and
without nuclear form factor, see Fig. 3 above, we show in
this plot also the transverse momentum distribution of the
pair for a calculation without form factor. It can be seen that
in this case the cross section gets sizeable contributions for
Pt.80 MeV/c.

We have studied in addition the question, whether espe-
cially the distribution as a function ofPt of the pair is sen-
sitive to the form ofPGDRsbd used in our approach. Using a
more general approach, see Appendix for details, one expect
that the next correction is of the formPGDR

3 sbd,1/b6 instead
of PGDR

2 sbd,1/b4. In such a model the average impact pa-
rameter changes from about 8Ra/3<19 fm to about

12Ra/5<17 fm, which is a small change compared to the
Compton wavelength of the electrons400 fmd, but is still a
10% reduction of this average impact parameter. We have
therefore studied the distribution of electron and positron
under this condition. As expected the differential distribu-
tions are found to be the same within the uncertainties of the
Monte Carlo approach used.

As an outlook for future experiments we are showing re-
sults and distributions one might expect to see for Pb-Pb
collisions at the LHC. Using the same kinematical restric-
tions as for the STAR experiment, the results are shown in
Figs. 6 and 7. The integrated cross section is found to be
2.90 mb for the tagged case.

Finally as a rather optimistic estimate we have calculated
also the differential cross section for a kinematical range of
upt u .2.6 MeV/c anduy u ,1.5, where ALICE will be able to
detect the electrons with its internal trigger system(ITS),
even though it will not be able to measure energies or mo-
menta.

With these kinematical conditions we can study the ques-
tion, whether ALICE will be able to see multiple pairs pro-
duced in a single collisions. For this we calculate the impact
parameter dependent probability under the kinematical con-
ditions. One finds that for impact parameters close to
bminPsbd<20%. Following Refs.[16,17,30,31] we use a
Poisson distribution as a good approximation for theN pair
production probability

PsN,bd =
PsbdN

N!
expf− Psbdg. s14d

Multiplying with PGDR
2 sbd and integrating overb we get the

cross section for1,2, . . . ,N pair production.

FIG. 4. Energy and transverse momentum dis-
tributions are shown for the electron and the pos-
itron, corresponding to the STAR experimental
conditions. In lowest order QED the two distribu-
tions are identical and the spread between the two
is a measure of the uncertainties coming from the
Monte Carlo integration. This is compared with
an untagged cross section calculation(dotted
line), divided by a factor 183 to give the same
integrated cross section.

FIG. 5. The cross section of thee+e− pair as a
function of the invariant mass and the transverse
momentum are shown. Again the results are com-
pared with the untagged cross section(dotted
line). In addition we have plotted the result of the
tagged calculation without form factor(dashed
line). Both the untagged cross section and the one
without form factor have been normalized(by di-
viding them with a factor 183 and 2.74, respec-
tively) to give the same integrated cross section
as the tagged case including the form factor.
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ssNd =E d2bPGDR
2 sbdPsN,bd. s15d

The result as a function ofbmin is shown in Fig. 8 together
with the total integrated cross section

stotal = o
N=1

`

ssNd. s16d

The cross section one would get from the Born cross section
can be interpreted as a “multiplicity” cross section

sBorn =E d2bPGDR
2 sbdPsbd = o

N=1

`

NssNd, s17d

and would be relevant in order to calculate the number of
pairs produced(in contrast to the number of events). One can
see that about 10% of all events are multiple pair production
events and accordingly also about 10% of all pairs are pro-
duced in a multiple pair production process. This shows that
at ALICE one should be able to detect and study multiple
pair production.

We have investigated a similar question also for RHIC
using as an estimate for a possible rangept.50 MeV/c and
2.5,y,4.0. Unfortunately the probability for pair produc-
tion under these conditions is only of the order of a few
permille and therefore the multiple pair production cross sec-
tion is less than one permille of the single pair production
cross section, making such an investigation difficult.

IV. DISCUSSION AND OUTLOOK

We have calculated cross section and differential distribu-
tions of the pair production process in ultraperipheral heavy
ion collisions in lowest order QED for the simultaneous elec-
tromagnetic excitation of both ions. We have seen that the
most sensitive quantity is the transverse momentum distribu-
tion, which differs the most from the distribution of the un-
tagged process. As the comparison will show[2,22] our re-
sults were found to be in good agreement with the
experimental results. On the other hand only about 50 events
were found at STAR, so the overall statistics is not very
good. Additional runs might give better statistics. Still our
analysis shows that the data at the moment give no sign that
higher order Coulomb effects are large for pairs produced
with these large transverse momenta[32]. Such higher order
Coulomb effects would lead most likely to an asymmetry of
the electron and positron distribution especially for the trans-
verse momentum distribution. At the moment however no
calculation exists, which describes consistently the effects of
the strong Coulomb fields of both pairs on the pair produc-
tion process at small impact parameter. Due to the experi-
mental conditions of RHIC, the probability for pair produc-
tion is well below one; the multiple pair productions effects
are therefore rather small.

As already mentioned above the transverse momentum
cut of pt.65 MeV/c at STAR was only possible due to a
reduced magnetic field. There are currently plans to use even
lower magnetic fields and also making use of other detectors
within STAR [33] in order to extend the measurements both
to smaller transverse momenta and to larger rapidities. It
remains to be seen, whether the new phenomenon of mul-

FIG. 6. Energy and transverse momentum dis-
tribution are shown for the two leptons for Pb-Pb
collisions at the LHC(solid line). This is com-
pared with the rescaled spectrum(factor 1.65) of
Au-Au collisions at RHIC(dotted line).

FIG. 7. The invariant mass and the transverse
momentum of thee+e− pair is shown for Pb-Pb
collisions at the LHC(solid line). The results are
compared with the rescaled spectrum(factor
1.65) of Au-Au collisions at RHIC(dotted line).
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tiple pair production will then be detected. On the other hand
with the low transverse momentum cutoff of the ITS at
ALICE/LHC, about 10% of all pair production events are
going to be multiple pair production processes, therefore one
should expect that this new phenomena will be observed
easily there. The fact that no kinematical information and
also no particle identification is possible at ALICE, will
make such a measurement still a challenge.
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APPENDIX

Throughout our calculations we have assumed that only
the GDR excitation is relevant for the triggering and there-
fore a simplified dependence onb, see Eq.(4), has been
used. In this appendix we want to show that this is not a real
limitation, but that other impact parameter dependencies can
be treated as well. For example, assuming that the higher
resonant states of the GDR are excited through
a Poisson process, we would need to replacePGDRsbd by
1−expf−PGDRsbdg. In general we assume that the relevant
PA→A*→X+xnsbd can be expressed as a series of inverse pow-
ers ofb

PA→A*→X+xnsbd = o
n=0

`
Sn

bn . sA1d

Using this in the expression ford6se+e−,2GDR/ sd3p+d3p−d, see
Eq. (12), we need to calculate generalizations ofIszd, Eq.(9),
of the form

Inszd: =E
z

` dx

xn J0sxd, sA2d

with I3szd corresponding to the one used in our calculations.
For the calculation of these integrals, we first use the fol-

lowing recursion relation:

Inszd =
J0szd

sn − 1dzn−1 −
J1szd

sn − 1d2zn−2 −
1

sn − 1d2In−2szd.

sA3d

This relation can be easily derived by partial integration and
by using the well-known recursion relations between the
Bessel functionsJnszd [34]. By repeated application of Eq.
(A3) every In with odd and evenn can be reduced to the
starting valuesI1szd and I0szd, respectively, which are given
in the literature[34]:

I0szd = 1 −z 1F2S1

2
;1,

3

2
;−

z2

4
D sA4d

and

I1szd =
z2

8 2F3S1,1;2,2,2;−
z2

4
D − ln

z

2
− g, sA5d

whereg is the Euler constant.
These two expressions can be calculated easily by the

rapidly converging power series of the hypergeometric func-
tions or by using suited polynomial expressions given in the
literature[34]. We are here only interested in the case, where
n=2m+1 is an odd number, in which case the complete re-
cursion relation is given by

I2m+1szd =
s− 1dm

m!222m+1HJ0szdo
s=1

m

s ! ss− 1d ! S−
4

z2Ds

−
z

2
J1szdo

s=1

m

ss− 1d!2S−
4

z2Ds

+ I1szdJ . sA6d

Moreover this equation can be further simplified, by splitting
off the terms singular atz=0 (the principal part of the Lau-
rent expansion inz), by using the power series for the Bessel
functions:

Jmszd = S z

2
Dm

o
k=0

`
s− z2/4dk

k ! sk + md!
, sA7d

and by rearranging the resulting sum. After some straightfor-
ward algebra we thus obtain the compact expression form
ù0

FIG. 8. The different cross sections for single and multiple pair
production together with the mutual electromagnetic excitation of
both ions are shown for the kinematical conditions at ALICE. The
cross section is shown as a function ofbmin, the minimal impact
parameter. See the text for further details of the different cross
sections.
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I2m+1szd =
s− 1dm

22m+3sm+ 1d!2z2
2F3S1,1;2,2 +m,2 +m;−

z2

4
D

sA8d

−
s− 1dm

22msmd!2Sln
z

2
+ gD + o

k=0

m

am,kz
−2k, sA9d

where

am,0 =
s− 1dm

22mm!2o
s=1

m
1

s
, am,k =

s− 1dm−k

22sm−kd+1sm− kd!2k
k ù 1.

sA10d
For m=1 we get the explicit expression

I3szd =
1

2z2 +
1

4
Sln

z

2
+ g − 1D −

1

128
z2

2F3s1,1;2,3,3;−z2/4d,

sA11d
and similarly form=2. Again the hypergeometric function in
Eq. (A9) can well be calculated numerically by its power
series:

2F3S1,1;2,2 +m,2 +m;−
z2

4
D

= sm+ 1d!2S−
4

z2Do
k=1

` S−
z2

4
Dk

ksk + md!2 . sA12d

We use this rapidly converging power series in our numerical
calculations. For the case wheren is an even number, the
same approach can be used. For completeness we only give
here the final result:

I2mszd =
1

z2m−1s2m− 1d 1F2S− m+
1

2
;− m+

3

2
,1;−

z2

4
D

+
s− 1dm22mm!2

s2md!2 . sA13d
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