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We study low-lying multipole strength in neutron-halo nuclei. The strength depends only on a few
low-energy constants: the neutron separation energy, the asymptotic normalization coefficient of the
bound-state wave function, and the scattering length that contains the information on the interaction in
the continuum. The shape of the transition probability shows a characteristic dependence on few scaling
parameters and the angular momenta. The total E1 strength is related to the root-mean-square radius of
the neutron wave function in the ground state and shows corresponding scaling properties. We apply our
approach to the E1 strength distribution of 11Be.
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Electromagnetic dipole strength in stable nuclei is
concentrated in the giant dipole resonance. In recent
years it was found that there is an appreciable low-lying
E1 strength in light neutron-rich nuclei [1,2]. This phe-
nomenon is especially pronounced in neutron-halo nu-
clei, where it can be explained essentially as a single-
particle effect [3,4]. Examples are 11Be [5,6] and 19C [7].
This low-lying strength was observed mainly in Coulomb
dissociation experiments; for a recent review, see [8].

The dissociation cross section directly reflects the di-
pole strength distribution or reduced transition probabil-
ity dB�E1�=dE. Photodissociation of and radiative
capture leading to halo nuclei provide equivalent infor-
mation. The measured strength distributions show simple
features. They tend to be universal when plotted in the
appropriate reduced parameters [9] because low-energy
processes do not depend on certain details of the interac-
tion. Consequently, effective field theories are nowadays
used for the description of halo nuclei [10]. In Ref. [11]
nonrelativistic two-body scattering by a short range po-
tential was studied using the renormalization group. It
was found that the expansion around the nontrivial fixed
point is equivalent to the effective-range (ER) expansion.

It is the purpose of this Letter to apply the ER approach
to one-neutron-halo nuclei and find scaling laws for the
transition strength. This work is similar in spirit to ef-
fective field theories: the effects of unknown short dis-
tance behavior are parametrized by a few low-energy
constants. It is not our aim to relate these parameters to
the many-body physics.

General expressions for electromagnetic strength dis-
tributions in halo nuclei were derived before (see, e.g.,
[12], and references therein, for proton � core systems),
however, often neglecting the nuclear continuum interac-
tion. Also expansions for small relative energies were
obtained [13]. The application of ER theory to the study
of halo nuclei was considered before, e.g., in the descrip-
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tion of ground state properties [14], and for radiative
capture cross sections into s-, p-, and d-wave bound states
taking into account the interaction only for s-waves as-
suming a zero-range potential [15]. The effect of the
interaction in the continuum states on direct neutron
capture and photodisintegration of 13C was studied in
[16,17]. While they find a sensitivity on neutron optical
model parameters for s! p capture, this sensitivity is
strongly reduced for the cases of p! s and p! d
capture.

The prototype of a neutron-halo nucleus is the deu-
teron. Radiative capture or photodissociation at low en-
ergies are well described by the binding energy and the
effective range; see, e.g., [18]. Quite similar, the low-lying
E1 strength in neutron-halo nuclei is determined by two
parameters if the continuum interaction is neglected: one
is the binding energy (or neutron separation energy Sn)
which determines the overall shape of the dB�E1�=dE
distribution; the other one is a normalization constant. In
the analogous case of 19C, the binding energy could be
determined directly from the shape of the observed
strength distribution [7]. Effects of the neutron-core in-
teraction are parametrized efficiently by the ER
approximation.

The cross section for photodissociation of a nucleus a
into a neutron n and a core c is given by
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The reduced transition probability for electromagnetic
multipolarity � is denoted by dB���=dE. The photon
energy is given by E� � E� Sn with Sn � 	h2q2=�2��,
where q is the inverse decay length of the bound-state
wave function and � is the reduced mass. Using detailed
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balance, the corresponding radiative capture cross section
can be obtained from this expression. With the equivalent
photon number, cross section (1) determines the (first
order) Coulomb dissociation cross section [8].

The strength distribution dB�E; li ! lf�=dE for a
certain transition depends on the corresponding matrix
element that contains a radial integral with the wave
functions of the initial and final states with orbital angu-
lar momenta li and lf, respectively. (We consider spinless
neutrons and cores; a generalization is obvious.) At low
energies E � 	h2k2=�2��, the main contribution to the
radial integral arises from radii larger than the radius R
of the nucleus. This is true for all possible values of the
angular momenta involved. In the figures of Refs. [16,17]
it can very well be seen that the radial integrals are
dominated by the outside region. Away from a resonance,
a case which we always assume here, the continuum wave
function is small inside the nuclear radius. In a hard
sphere model it is exactly zero.

For the neutron � core case the dimensionless reduced
radial integral is well approximated by

I
lf
li
�� � �ilikq�2

Z 1

R
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� sin��lf �ylf �kr�� (2)

with spherical Bessel (jl), Neumann (yl), and Hankel
(h�1�l ) functions, respectively, that describe the behavior
of the radial wave functions beyond the range of the
nuclear potential. The phase shift �lf contains the infor-
mation on the interaction in the final continuum state.
Introducing the dimensionless shape functions
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the reduced transition probability is given by
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with the effective charge number Z��eff � Zc�mn=�mn �
mc�� and the asymptotic normalization constant (ANC)
Cli of the bound-state wave function. For neutron � core
systems the dipole transitions are dominant since E2
transitions are suppressed by the small effective charge.

The ANC of the actual many-body wave function as it
appears in (4) consists of the ANC of a neutron single-
particle wave function and a spectroscopic factor which
accounts for the many-body aspects. The single-particle
ANC is determined by the normalization of the wave
function. It depends on q with the scaling behavior
jCli j

2 / q for li � 0 and jCli j
2 / q�2li�1 for li > 0 as

seen, e.g., in a square-well model. Here, we have intro-
duced the dimensionless scaling parameter � � qR. The
142502-2
factor jCli j
2=q2�3 in the reduced transition probability

(4) depends only on properties of the ground state. It
directly shows the scaling with the characteristic parame-
ter q. Clearly, for small separation energies of the neutron
a large transition strength can be expected.

The reduced radial integrals (2) have the general form
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with " � kR, where the rational functions R
���lf
li

�� can
be found for all relevant values of li and lf by means of
the recursion relations
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starting from
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The radial integral involving the regular scattering wave
function shows a r�li�lf�1 behavior for small values of r;
thus it can be extended to R � 0. On the other hand, the
radial integral involving the irregular function shows a
r�li�lf behavior. Thus for  � 1 we can extend the
integral to zero only for li � 0; lf � 1 and li � 1; lf � 0
and have convergence. In the other cases, one has to cut
off the integral for a finite R value.

For low energies we can use the effective-range ap-
proximation k2l�1 cot��l� � �1=al � rlk2=2� � � � for
the phase shifts �l with the scattering length al and the
effective-range rl in order to take the interaction in the
continuum state into account. (Note that al and rl have the
dimension of a length only for l � 0.) We restrict our-
selves to the lowest order term, i.e.,

tan��l� � ��xcl��2l�1 (9)

with the dimensionless reduced scattering length cl de-
fined by c2l�1

l �al=R2l�1 and the ratio x � "=� � k=q ������������
E=Sn

p
. We assume that this is a reasonable approxima-

tion of the phase shift. We further assume that the scat-
tering length has a ‘‘natural’’ value with cl being O�1�.
For example, for s-wave scattering from a hard sphere
142502-2



TABLE I. Dimensionless quantities cj1, see Eq. (9), and spec-
troscopic factors C2S from the fit to experimental data [6] of
11Be Coulomb dissociation.

Model c3=21 c1=21 C2S

Effective-range �0:41�86;�20� 2:77�13;�14� 0.704(15)
Woods-Saxon � 0:46�70;�14�a 1.87(3)a 0.696(15)

aAt energy E � 0:4 MeV in the peak of the strength
distribution.
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with radius R we have c0 � 1. In exceptional cases, this
assumption is not fulfilled, e.g., if there are resonances in
the low-lying continuum or subthreshold states. For an
s-wave halo nucleus bound by a zero-range force the
scattering length is given by a0 � 1=q; i.e., c0 � 1=�.
In such a case the scattering length in the s wave is
unnaturally large; it diverges in the halo limit �! 0.

We can expand the analytical results for S
lf
li
�� in terms

of the small parameter � and obtain for the most impor-
tant cases for dipole transitions
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The term in front of the square bracket in Eq. (10) is the
well-known result without continuum interaction; see,
e.g., [5,17]. In general there will be a modification of
the shape function. It is getting more and more important
for larger binding energies of the halo nucleus, i.e., larger
�. Transitions with lf � li � 1 are more affected by this
final-state interaction than transitions with lf � li � 1. In
the case s! p the first correction to the shape function
for �! 0 appears only in the �3 term proportional to c31.
There are no corrections of lower order in � independent
of the final-state interaction. This explains the remarkable
uniformity of the characteristic shape for the low-lying
dB�E1�=dE strength in halo nuclei such as 11Be and 19C.
For the p! s transition there is a greater sensitivity to
the final-state interaction. It appears already as a correc-
tion linear in � and c0. This is in accord with the results of
Ref. [16].

The total transition strength can be obtained by inte-
grating (4) over the relative energy E. It is given by
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For dipole transitions and no final-state interaction (i.e.,
cl � 0 corresponding to a plane wave in the final state),
we find
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A finite value of � leads to a reduction of the total
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strength in the continuum as compared to the extreme
halo limit � � 0. With final-state interaction, the func-

tions T
lf
li
�� also depend on the reduced scattering length

cl; however, rather lengthy expressions are obtained.
The value of B�E1; li� �

P
lfB�E1; li ! lf� for all E1

transitions from a state with orbital angular momentum li
is directly related by the non-energy-weighted sum rule

B�E1; li� � �Z�1�effe�
2 3

4�
hr2ili (17)

to the root-mean-square (rms) radius hr2ili of the same
bound state; see, e.g., [2]. The rms radius scales with � for
different values of the bound-state orbital angular mo-
mentum li as hr2i0 / R2=�2, hr2i1 / R2=�, and hr2ili / R

2

for li � 2 [4]. On the other hand, the energy-weighted
sum rule (Thomas-Reiche-Kuhn sum rule) gives a con-
stant independent of li. From the above we see clearly that
the low-lying strength is most pronounced for s-wave
bound states and to a lesser degree for p-wave bound
states in halo nuclei. Considering the q dependence of
B�E1; li ! lf� in (12) the scaling of hr2ili with � is exactly
reproduced. With no final-state interaction the full tran-
sition strength as predicted by the sum rule is found in the
continuum. However, if there are bound states in the
particular final state the continuum contribution to the
total strength is reduced and the shape will be distorted.
This will correspond to a nonzero value of cl.

Let us now apply the general theory to 11Be, which
shows a very pronounced single-particle halo structure
with a neutron bound by 504 keV in the 1

2
� ground state

that can be considered as a 2s1=2 state. Assuming a radius
of R � 2:78 fm the neutron separation energy corre-
sponds to a small value � � 0:4132< 1 typical for a
halo nucleus. Unlike the case of the deuteron, where there
is no excited bound state, there is a 1

2
� bound state at

320 keV excitation energy. We can regard it to a good
approximation as a 1p1=2 single-particle state. We per-
form a &2 fit of our analytical ER approach (not using the
expansion for small �) to the experimental Coulomb
dissociation data [6] by adjusting the reduced scattering
lengths c3=21 and c1=21 in the two p-wave channels (see
Table I) and the ground state ANCC0. The quantity c1=21 is
definitely unnaturally large as expected from the exis-
tence of the weakly bound 1

2
� state. In Fig. 1 our model fit
142502-3
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FIG. 1 (color online). Reduced transition probability as a
function of the excitation energy E� �E�Sn compared to
experimental data extracted from the Coulomb breakup of
11Be [6].
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(solid line) is compared to the experimental strength
distribution [6], including corrections due to the detector
response.

The obtained ANC C0 � 0:724�8� fm�1=2 can be
translated into a spectroscopic factor C2S by comparing
to the ANC of a normalized single-particle wave function
generated from a Woods-Saxon (WS) potential with a
depth adjusted to the correct neutron separation energy.
Assuming a radius of R � 2:78 fm as above and a dif-
fuseness parameter of a � 0:65 fm we obtain C2S �
0:704�15� which compares well with the spectroscopic
factors from experiment and theory as given in Ref. [6].
The model ground state wave function has a rms radius of
7.172 fm that corresponds to a total strength of B�E1� �
1:645e2 fm2 according to (17). Applying the spectro-
scopic factor we obtain a total strength of
1:159�36�e2 fm2. The experimental continuum strength
[6] exhausts about 78(5)% of the sum rule. The ground
state transition probability to the first excited state is
experimentally known to be B�E1� � 0:116�12�e2 fm2

[19] corresponding to 10(1)% of the sum rule. This
bound-state transition strength is indicated in Fig. 1 as a
dotted line assuming an arbitrary FWHM of 0.160 MeV.
The remaining 12(6)% can be attributed to the p3=2 state
that is occupied. Comparing the experimental transition
strength to results of a plane-wave calculation would
underestimate the extracted spectroscopic factor.

Our ER approach can be compared to an exact calcu-
lation of the matrix elements with wave functions ob-
tained from WS potentials. We assume the same shape of
the potential with R and a as given above. Repeating the
&2 fit by adjusting the depth of the potential in the two p
waves independently we find C2S � 0:696�15� close to
the result of our ER approach. The exact calculation
(dashed line in Fig. 1) almost coincides with our ER
approximation. We can also extract the dimensionless
142502-4
quantities cj1 according to Eq. (9). Their modulus de-
creases with relative energy (much more strongly for
c1=21 than for c3=21 ). Since the cj1 in our ER approach are
constant they can be considered as an average of the
actual values over the peak of the strength distribution.
Taking this into account a reasonable agreement of the
two approaches is found again (Table I).

In conclusion we find that low-lying electric multipole
strength in one-neutron-halo nuclei can be described
effectively by a few low-energy constants: the binding
energy, the scattering length, and the asymptotic normal-
ization constant. We apply our ER approach to the halo
nucleus 11Be and find remarkable agreement with an exact
calculation. The exhaustion of the strength due to the
bound state affects the extraction of the ANC and of the
spectroscopic factor. In our approach there is no need to
determine parameters of optical potentials from elastic
scattering.

The present theoretical approach will be applied to
other halo nuclei. It will be extended to higher multi-
polarities and to proton halo nuclei in a forthcoming
publication [20]. An effective-range theory of two-neu-
tron-halo nuclei like 11Li would be very interesting but is
certainly much more complex [4]. An early work related
to this problem is [21].

We are grateful to T. Aumann and H. Emling for useful
discussions.
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