844 research outputs found

    A Pixel Vertex Tracker for the TESLA Detector

    Get PDF
    In order to fully exploit the physics potential of a e+e- linear collider, such as TESLA, a Vertex Tracker providing high resolution track reconstruction is required. Hybrid Silicon pixel sensors are an attractive sensor technology option due to their read-out speed and radiation hardness, favoured in the high rate TESLA environment, but have been so far limited by the achievable single point space resolution. A novel layout of pixel detectors with interleaved cells to improve their spatial resolution is introduced and the results of the characterisation of a first set of test structures are discussed. In this note, a conceptual design of the TESLA Vertex Tracker, based on hybrid pixel sensors is presentedComment: 20 pages, 11 figure

    Metal-insulator crossover in the Boson-Fermion model in infinite dimensions

    Full text link
    The Boson-Fermion model, describing a mixture of tightly bound electron pairs and quasi-free electrons hybridized with each other via a charge exchange term, is studied in the limit of infinite dimensions, using the Non-Crossing Approximation within the Dynamical Mean Field Theory. It is shown that a metal-insulator crossover, driven by strong pair fluctuations, takes place as the temperature is lowered. It manifests itself in the opening of a pseudogap in the electron density of states, accompanied by a corresponding effect in the optical and dc conductivity.Comment: 4 pages, 3 figures, to be published in Phys. Rev. Let

    Correlation effects on electronic and optical properties of a C60 molecule: A variational Monte Carlo study

    Get PDF
    The electronic and optical properties of the neutral C60 molecule are investigated in the extended Su-Schrieffer-Heeger model including a Hubbard-type on-site interaction by the variational Monte Carlo (VMC) method. The optical energy gap Eg of the molecule and the energies of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have been calculated as functions of the Hubbard interaction strength U divided by the hopping constant t. It is found that the energy of both the HOMO and LUMO levels increase almost equally with increase of U/t, so that the Hubbard term U/t has only a weak effect on Eg for intermediate interaction strengths (U/t<5). This is significantly different from the situation in conducting polymers. Pair-binding energies in the singlet and triplet states have also been calculated by the VMC method for nondimerized molecules, and a comparison has been made with the results obtained by perturbation theory. © 1996 The American Physical Society.published_or_final_versio

    Non-linear feedback effects in coupled Boson-Fermion systems

    Full text link
    We address ourselves to a class of systems composed of two coupled subsystems without any intra-subsystem interaction: itinerant Fermions and localized Bosons on a lattice. Switching on an interaction between the two subsystems leads to feedback effects which result in a rich dynamical structure in both of them. Such feedback features are studied on the basis of the flow equation technique - an infinite series of infinitesimal unitary transformations - which leads to a gradual elimination of the inter-subsystem interaction. As a result the two subsystems get decoupled but their renormalized kinetic energies become mutually dependent on each other. Choosing for the inter - subsystem interaction a charge exchange term (the Boson-Fermion model) the initially localized Bosons acquire itinerancy through their dependence on the renormalized Fermion dispersion. This latter evolves from a free particle dispersion into one showing a pseudogap structure near the chemical potential. Upon lowering the temperature both subsystems simultaneously enter a macroscopic coherent quantum state. The Bosons become superfluid, exhibiting a soundwave like dispersion while the Fermions develop a true gap in their dispersion. The essential physical features described by this technique are already contained in the renormalization of the kinetic terms in the respective Hamiltonians of the two subsystems. The extra interaction terms resulting in the process of iteration only strengthen this physics. We compare the results with previous calculations based on selfconsistent perturbative approaches.Comment: 14 pages, 16 figures, accepted for publication in Phys. Rev.

    Simple theory of extremely overdoped HTS

    Full text link
    We demonstrate the existence of a simple physical picture of superconductivity for extremely overdoped CuO2 planes. It possesses all characteristic features of HTS, such as a high superconducting transition temperature, the dx2y2d_{x^2 - y^2} symmetry of order parameter, and the coexistence of a single electron Fermi surface and a pseudogap in the normal state. Values of pseudogap are calculated for different doping levels. An orbital paramagnetism of preformed pairs is predicted.Comment: 7 pages, 1 figur

    Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer

    Get PDF
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Biomacromolecules, copyright © American Chemical Society after peer review. To access the final edited and published work, see http://pubs.acs.org/doi/pdf/10.1021/bm701055k.A method to functionalize cholecyst-derived extracellular matrix (CEM) with free amine groups was established in an attempt to improve its potential for tethering of bioactive molecules. CEM was incorporated with Generation-1 polyamidoamine (G1 PAMAM) dendrimer by using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide and N-hydroxysuccinimide cross-linking system. The nature of incorporation of PAMAM dendrimer was evaluated using shrink temperature measurements, Fourier transform infrared (FTIR) assessment, ninhydrin assay, and swellability. The effects of PAMAM incorporation on mechanical and degradation properties of CEM were evaluated using a uniaxial mechanical test and collagenase degradation assay, respectively. Ninhydrin assay and FTIR assessment confirmed the presence of increasing free amine groups with increasing quantity of PAMAM in dendrimer-incorporated CEM (DENCEM) scaffolds. The amount of dendrimer used was found to be critical in controlling scaffold degradation, shrink temperature, and free amine content. Cell culture studies showed that fibroblasts seeded on DENCEM maintained their metabolic activity and ability to proliferate in vitro. In addition, fluorescence cell staining and scanning electron microscopy analysis of cell-seeded DENCEM showed preservation of normal fibroblast morphology and phenotype

    The boson-fermion model with on-site Coulomb repulsion between fermions

    Full text link
    The boson-fermion model, describing a mixture of itinerant electrons hybridizing with tightly bound electron pairs represented as hard-core bosons, is here generalized with the inclusion of a term describing on-site Coulomb repulsion between fermions with opposite spins. Within the general framework of the Dynamical Mean-Field Theory, it is shown that around the symmetric limit of the model this interaction strongly competes with the local boson-fermion exchange mechanism, smoothly driving the system from a pseudogap phase with poor conducting properties to a metallic regime characterized by a substantial reduction of the fermionic density. On the other hand, if one starts from correlated fermions described in terms of the one-band Hubbard model, the introduction in the half-filled insulating phase of a coupling with hard-core bosons leads to the disappearance of the correlation gap, with a consequent smooth crossover to a metallic state.Comment: 7 pages, 6 included figures, to appear in Phys. Rev.

    Potential Coefficient of Performance Improvements Due to Glide Matching with R-407C

    Get PDF
    corecore