The boson-fermion model, describing a mixture of itinerant electrons
hybridizing with tightly bound electron pairs represented as hard-core bosons,
is here generalized with the inclusion of a term describing on-site Coulomb
repulsion between fermions with opposite spins. Within the general framework of
the Dynamical Mean-Field Theory, it is shown that around the symmetric limit of
the model this interaction strongly competes with the local boson-fermion
exchange mechanism, smoothly driving the system from a pseudogap phase with
poor conducting properties to a metallic regime characterized by a substantial
reduction of the fermionic density. On the other hand, if one starts from
correlated fermions described in terms of the one-band Hubbard model, the
introduction in the half-filled insulating phase of a coupling with hard-core
bosons leads to the disappearance of the correlation gap, with a consequent
smooth crossover to a metallic state.Comment: 7 pages, 6 included figures, to appear in Phys. Rev.