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Abstract. We generalize the results of [11] and [12] for the unit ball Bd of C
d. In

particular we show that under the weight condition (B) the weighted H∞–space
on Bd is isomorphic to ℓ∞ and thus complemented in the corresponding weighted
L∞–space. We construct concrete, generalized Bergman projections accordingly.
We also consider the case where the domain is the entire space C

d.
We also show that for the polydisc D

d, the weighted H∞–space is never iso-
morphic to ℓ∞.

1. Introduction.

We study the structure and projection operators of the spaces Hv := Hv(Ω) :=
H∞

v (Ω), consisting of holomorphic functions on Ω (:= C
d or its open unit ball Bd),

the space endowed with a weighted sup-norm

‖f‖v = sup
z∈Ω

|f(z)|v(|z|),(1.1)

where v : [0, R[→ R+, R = supz∈Ω |z|, is a suitable bounded continuous weight func-
tion (see below). Our aim is to construct projection operators which are bounded
with respect to ‖ · ‖v and which project the corresponding weighted spaces, Cv(Ω)
or Lv(Ω) := L∞

v (Ω), of continuous or L∞-functions, respectively, onto Hv(Ω). The
results are nontrivial generalizations of those in [11] and [12]. In [11] the first named
author studied the corresponding function spaces on the open unit disc D of the
complex plane C and introduced a large class (B) of radial weight functions v. He
proved that the space Hv(D) is isomorphic to the Banach-space ℓ∞, if and only if v
is in the class (B) (otherwise Hv(D) was shown to be isomorphic to H∞). In [12],
concrete bounded projections from Lv(D) or Cv(D) onto Hv(D) were constructed.

Generalizing the weight class (B) to the case of several variables, the following
will be our main result for spaces of holomorphic mappings on Ω (for details of the
notations and definitions, see below).

Theorem 1.1. The following are equivalent:
(i) The weight v satisfies (B).
(ii) Hv(Ω) is isomorphic to the Banach space ℓ∞.
(iii) (Hv)0(Ω) is isomorphic to c0.

Since ℓ∞ is an injective Banach space, the result (ii) implies

Corollary 1.2. If the weight v satisfies the condition (B), then there exist bounded
projections from Lv(Ω) onto Hv(Ω).

The second named author was partially supported by the Väisälä Foundation of the Finnish
Academy of Sciences and Letters. The authors also thank Eero Saksman (Helsinki) for collabora-
tion during the project.
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Concrete examples of such projections are constructed in Section 5, see Theorems
5.3 and 5.5.

We also consider the corresponding spaces Hv(Dd) and (Hv)0(D
d) on the polydisc

D
d = D × . . . × D. Here, we consider weighted norms of the form

‖f‖v = sup
z∈Dd

|f(z)|v(|z|∞)(1.2)

where |z|∞ := max(|z1|, . . . |zd|) for z = (z1, . . . , zd) ∈ D
d and v again is a weight on

the interval [0, 1[.

Proposition 1.3. If d ≥ 2 then Hv(Dd) is never isomorphic to ℓ∞ and (Hv)0(D
d)

is never isomorphic to c0.

However, it follows from [4] that Hv(Dd) is almost isometrically isomorphic to a
subspace of ℓ∞. Moreover, on D

d one can also consider product weights ω(z) :=
ω1(z1)ω2(z2) . . . ωd(zd), where each ωj, j = 1, . . . , d, is a weight on D. It follows
from [2], Corollary 42, and [1], Satz 3.5, that (Hω)0(D

d) is isometrically isomorphic
to the ǫ–product of the spaces (Hωj)0(D), and hence, the structural properties of
(Hω)0(D

d) and Hω(Dd) can be deduced from those of the component spaces. In
particular there are examples where Hω(Dd) is isomorphic to l∞ and (Hω)0(D

d) is
isomorphic to c0.

2. Notation.

Let d ∈ N := {0, 1, 2, . . .}, d ≥ 2. We use the standard multi–index notation:
if k = (k1, . . . , kd) ∈ N

d and z = (z1, . . . , zd) ∈ C
d, we denote |k| := k1 + . . . +

kd and zk := zk1

1 zk2

2 . . . zkd

d . If k = (k1, . . . , kd) ∈ Z
d and z = (z1, . . . , zd) =

(r1e
iϕ1 , . . . , rde

iϕd) ∈ C
d, we still denote

|k| := |k1 + . . . + kd| and ek(z) :=
d

∏

j=1

(

r
|kj |
j eikjϕj

)

.(2.1)

By Ω we denote either the whole space C
d or the Euclidean ball

Bd = {z ∈ C
d : |z| < 1};

here |z|2 := 〈z, z〉 with 〈z, w〉 :=
∑d

k=1 zkw̄k for z, w ∈ C
d. We also consider the

polydisc

D
d = {z ∈ C

d : max(|z1|, . . . , |zd|) < 1}.

Let R := +∞, if Ω = C
d, or R := 1, if Ω = Bd, and let us denote I := [0, R[.

By a weight (on I) we mean a continuous, non-increasing function v : I → R+ with
v(r) > 0 for r ∈ [0, R[ and lim

r→R
rmv(r) = 0 for all m ≥ 0. We extend v to Ω or to the

polydisc as follows. On the set Ω we shall consider weights of the form v(z) := v(|z|),
and, on D

d, of the form v(z) := v(|z|∞) := v(max(|z1|, . . . , |zd|)) (in the latter case
of course R = 1). We keep the same notation for all cases; the domain of definition
will be indicated or clear from the context.

We introduce the weighted sup-norms (1.1) and (1.2), respectively, where the
“sup” is replaced by “ess sup” in the case of measurable functions on Ω. Moreover,
for 0 < ρ < R, put

M∞(f, ρ) = sup
|z|=ρ

|f(z)|.
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We study the spaces

Hv = Hv(Ω) = {h : Ω → C holomorphic : ‖h‖v < ∞}(2.2)

and

(Hv)0 = (Hv)0(Ω) = {h ∈ Hv : lim
ρ→R

M∞(h, ρ)v(ρ) = 0},(2.3)

and also the spaces Hv(Dd) and (Hv)0(D
d), which are defined by replacing Ω by

the polydisc in (2.2) and (2.3), respectively. In addition, the larger spaces Cv =
Cv(Ω) and Lv = Lv(Ω) are defined by replacing “holomorphic” by “continuous” or
“measurable” in (2.2). All of these spaces are Banach spaces with respect to ‖ · ‖v.

We write X ∼ Y to denote that the Banach spaces X and Y are isomorphic, i.e.
there exists a bounded linear bijection from X onto Y (the inverse is also bounded
by the open mapping theorem). For the bidual we have (Hv)0(Ω)∗∗ ∼ Hv(Ω),
see [3]. Recall that a closed (linear) subspace Z of the Banach space X is called
complemented, if there exists a bounded operator, projection, P : X → X such that
P (X) = Z and P 2 = P . For Banach space operator theory we use the notation and
terminology of [10] and [16].

Let v be a weight on I as above. For all n > 0 (not necessarily integers!) we fix
a global maximum point ρn of the function ρ 7→ ρnv(ρ), ρ ∈ [0, R[. The following
concept will only be used for the spaces on Ω.

Definition 2.1. The weight v : I → R+ (and the corresponding weight v : Ω → R+)
are said to satisfy condition (B) if

∀b1 > 1 ∃b2 > 1 ∃c > 0 ∀m,n > 0 :
(

ρm

ρn

)m
v(ρm)

v(ρn)
≤ b1 and m,n, |m − n| ≥ c ⇒

(

ρn

ρm

)n
v(ρn)

v(ρm)
≤ b2

For the following examples, see [11]. If R = 1, v(ρ) = (1 − ρ)α for some α > 0
or v(ρ) = exp(−1/(1 − ρ)) satisfy condition (B). Moreover, all so-called normal
weights satisfy (B) (for the definition of normality, see [15] and [5]). An example of
a weight not satisfying (B) is v(ρ) = (1 − log(1 − |ρ|))−1 (see [7]).

3. Proof of Theorem 1.1, first part.

The bidual satisfies (Hv)0(Ω)∗∗ ∼ Hv(Ω), which immediately proves (iii) ⇒ (ii).
If v does not satisfy (B), we denote Ω1 := C, if R = ∞ (respectively, D, if R = 1).

By [11] (together with [12], Proposition 1), Hv(Ω1) ∼ H∞, the space of bounded
holomorphic functions D → C, endowed with the unweighted sup-norm. We re-
mark that Hv(Ω1) is isomorphic to a complemented subspace of Hv(Ω). Indeed, for
g ∈ Hv(Ω1) define Tg ∈ Hv(Ω) by (Tg)(z1, . . . , zd) = g(z1). Then ‖Tg‖v = ‖g‖v.
Moreover, for h ∈ Hv(Ω) define Sh ∈ Hv(Ω1) by (Sh)(z) = h(z, 0, . . . , 0). Then
‖Sh‖v ≤ ‖h‖v and TS is a bounded projection from Hv(Ω) onto THv(Ω1) ∼
Hv(Ω1).

So, if v does not satisfy (B), then H∞ is complemented in Hv(Ω). Therefore
Hv(Ω) cannot be isomorphic to ℓ∞. This proves (ii) ⇒ (i).

The proof of (i) ⇒ (iii) requires much more work. We complete the proof in
Sections 6–7.
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4. Proof of Proposition 1.3

Let v be an arbitrary weight on D
d of the form v(|z|∞), as in Section 2. To

prove the proposition, it suffices to assume d = 2, since Hv(D2) and (Hv)0(D
2)

are complemented in Hv(Dd) and (Hv)0(D
d), respectively, and infinite dimensional

complemented subspaces of ℓ∞ and c0 are isomorphic to ℓ∞ and c0, respectively (see
[10], Volume I). In the following we consider the case of the larger spaces; the proof
for (Hv)0(D

2) is the same.
The idea is to show that for all n, the subspace of n-homogeneous polynomials of

Hv(D2) is isometric with the space of one variable polynomials of degree at most n,
considered as a space on ∂D with respect to the unweighted sup-norm. The result
will follow by combining known facts about projection constants.

Let Pn be the subspace of Hv(D2) consisting of all homogeneous polynomials of
degree n. So every p ∈ Pn has the form

p(z1, z2) =
n

∑

j=0

αjz
j
1z

n−j
2

for some numbers αj. Let 0 ≤ r ≤ s < 1. Then, applying the maximum principle
to the function f(z1) = p(z1, z2) for a fixed z2, we see that

sup
ϕ,ψ∈[0,2π]

|p(reiϕ, seiψ)| ≤ sup
ϕ,ψ

|p(seiϕ, seiψ)|

= sn sup
ϕ,ψ

|p(eiϕ, eiψ)|

= sn sup
ϕ

|q(eiϕ)|

where q(w) =
∑n

j=0 αjw
j for w ∈ C. If s ≤ r, then we get similarly

sup
ϕ,ψ

|p(reiϕ, seiψ)| ≤ rn sup
ψ

|q(eiψ)|

This implies ‖p‖v = ρn
nv(ρn) supϕ |q(e

iϕ)|, where ρn is a maximum point of the
function s 7→ snv(s), s ∈ [0, 1[.

Let An be the space of all polynomials of one complex variable and of degree ≤ n.
We consider An as a space defined on ∂D and endow it with the sup-norm on ∂D.
The preceding shows that the mapping p 7→ qρn

nv(ρn) is an isometry from Pn onto
An.

There are projections Qn : Hv(D2) → Pn whose norms are uniformly bounded.
Indeed, for f ∈ Hv(D2) put

(Qnf)(z) =
1

2π

∫ 2π

0

f(eiϕz)e−inϕdϕ, z ∈ D
2

Hence the relative projection constants

λ(Pn, Hv(D2)) =

inf{ ‖Q‖ : Q : Hv(D2) → Pn is a bounded surjective projection }

are uniformly bounded. If Hv(D2) were a L∞−space, then, by well known facts
which we repeat below, the absolute projection constants

λ(Pn) = sup{ λ(Pn, X) : X is a Banach space, Pn ⊂ X }
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would be equivalent to λ(Pn, Hv(D2)), where the constants of equivalence do not
depend on n. This would mean that the numbers λ(Pn) are uniformly bounded.
However, the isometry of Pn and An would imply that the numbers λ(An) = λ(Pn)
are uniformly bounded. This is a contradiction because it is well-known that
λ(An) ≥ C log n for all n, see [16].

Concerning the statement on the projection constants, if Hv(D2) is a L∞−space,
then it is known by [9] to be injective, which means that there is a constant γ ≥ 1
satisfying the following. For any Banach space X ⊃ Pn there would be a linear map
T : X → Hv(D2) with T |Pn

= id|Pn
and ‖T‖ ≤ γ. This would imply λ(Pn, X) ≤

γλ(Pn, Hv(D2)). Hence, λ(Pn) ≤ γλ(Pn, Hv(D2)). ¤

5. Construction of the bounded projections onto Hv

For the rest of the paper we consider spaces on Ω, and leave the domain out of
the notation of the function spaces. We also assume throughout this section that v
satisfies (B). We first define the projection P : Cv → Hv.

Take f ∈ Cv, and let z ∈ C
d, |z| = 1, and 0 < ρ < R. For all j ∈ Z we set

(5.1) fj(ρz) =
1

2π

∫ 2π

0

f(ρzeiϕ)ρ−|j|e−ijϕdϕ,

and then

(5.2) (Q1f)(ρz) =
∑

n

(

∑

mn−1<j≤mn+1

tn,jfj(ρmn
z)ρj

)

,

where the strictly increasing positive sequence (mn)∞n=1 and the numbers tn,j, 0 ≤
tn,j ≤ 1, will be chosen in Definition 5.6; the series converges at least pointwise for
all ρz.

The function Q1f is not in general holomorphic (see the following example), so
we still define

(5.3) (Q2f)(ρz) =

∫

∂Bd

C(z, w)f(ρw)dσd(w)

where σd be the normalized rotation invariant measure on ∂Bd and C(·, ·) is the
Cauchy kernel

C(z, w) =
1

(1 − 〈z, w〉)d
=

1

(1 −
∑d

k=1 zkw̄k)d
(5.4)

Definition 5.1. We define Pf := Q2Q1f for f ∈ Cv.

Remark 5.2. To see that Q1f is not necessarily holomorphic, consider a function of
the form

f(ρz) = r(ρ)γ(|z1|, . . . , |zd|)ρ
|k|ek(z),(5.5)

where |z| = 1, 0 ≤ ρ < R, k ∈ N
d, and r and γ are continuous functions. If

j = k1 + . . . + kd, then |j| = |k| and

fj(ρz) = r(ρ)γ(|z1|, . . . , |zd|)ek(z).

Hence, Q1f = 0 for j < 0, and

Q1f(ρz) =
(

tn,jr(ρmn
) + tn+1,jr(ρmn+1

)
)

γ(|z1|, . . . , |zd|)ρ
|k|ek(z),
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for mn < j ≤ mn+1. So even if j ≥ 0 and r is constant, then Q1f need not be
holomorphic in case d > 1. (If d = 1, then j = k and γ must be constant since
|z| = 1.)

On the other hand we obtain Q1f = ρ|k|zk, if k ∈ N
d and r = γ = 1. This follows

from the definition of the numbers tn,j in (5.11). For f of the form (5.5) we obtain

Q2Q1f(ρz) =







ckρ
|k|zk, if k ∈ N

d

0, if k /∈ N
d,

where ck is a constant. Taking the Stone–Weierstrass theorem into account we see
that the linear span of the functions of the form (5.5) in Cv is dense in Cv with
respect to the topology of uniform convergence on compact subsets.

Below we complete the missing details of the above definition, show that the
definition is rigorous, and prove the following fact:

Theorem 5.3. P is a bounded projection from Cv onto Hv.

Before that we also define the projection PM : Lv → Hv.

Lemma 5.4. There exists a bounded operator A : Lv → Cv such that Af = f for
f ∈ Hv.

The following is now an obvious consequence of Theorem 5.3 and Lemma 5.4:

Theorem 5.5. The operator PM := PA is a bounded projection from Lv onto Hv.

Proof of Lemma 5.4. We fix a continuous function λ : [0, R[→]0, 1[ such that

0 < ρ − λ(ρ) , ρ + λ(ρ) < R(5.6)

and
1

2
v(ρ − λ(ρ)) ≤ v(ρ) ≤ 2v(ρ + λ(ρ))(5.7)

for all ρ ∈ [0, R[. The operator A is defined by

Af(z) =
d2d

πdλ(|z|)2d

∫

|w1−z1|
≤λ(|z|)/d

. . .

∫

|wd−zd|
≤λ(|z|)/d

f(w)dw1 . . . dwd,(5.8)

where dwj denotes the 2-dimensional real Lebesgue measure. The operator A is
bounded with respect to ‖ · ‖v, since the volume of the integration domain is
πdλ(|z|)2dd−2d and since the weight v is uniformly equivalent to a constant on the
integration domain, by (5.7).

Moreover, A keeps the holomorphic functions invariant, since they obey the mean-
value principle with respect to each variable separately.

Finally, Af is a continuous function: given z ∈ Ω, if ζ ∈ Ω, the integration
domains corresponding to Af(z) and Af(ζ), respectively, in (5.8), differ from each
other by a set of arbitrarily small measure, if |z − ζ| is small enough. This, and the
local boundedness of f imply

lim
ζ→z

Af(ζ) = Af(z),

i.e. Af is continuous at z. ¤
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The rest of this section is devoted to the details of the definition of P and proof of
Theorem 5.3. We prove here that Q1 is bounded with respect to ‖·‖v. Assuming that
Q2 is a bounded operator with respect to ‖ · ‖v, we also show that P is idempotent,
P 2 = P , and that it projects onto the subspace Hv. The only remaining thing, the
boundedness of Q2, is postponed to Section 6.

We define the numbers mn and tn,j as follows (the definition is the same as in
[12]).

Definition 5.6. Fix b > 2. Use (B) and induction to find numbers b1 and m0 = 0 <
m1 < m2 < . . . with

(5.9) b ≤

(

ρmn

ρmn+1

)mn v(ρmn
)

v(ρmn+1
)
,

(

ρmn+1

ρmn

)mn+1 v(ρmn+1
)

v(ρmn
)

≤ b1 for all n

and limn→∞ mn = ∞. (See [11], Lemma 5.1. and Proposition 6.4.) Then [11],
Proposition 4.1., implies that there are η > 0 and κ > 0 with

(5.10) η ≤
mn+1 − mn

mn − mn−1

≤ κ or mn+1 − mn−1 ≤ c for all n,

where c is the constant of condition (B). (Such indices can be easily computed for

special v. For example, if R = ∞ and v(ρ) = exp(−ρ), then mn+1 = mn +O(m
3/4
n ).

If R = 1 and v(ρ) = (1 − ρ)α then mn = γn for suitable γ > 1 (see [11]).)
Put

(5.11) tn,j =











j−[mn−1]
[mn]−[mn−1]

, mn−1 < j ≤ mn

[mn+1]−j
[mn+1]−[mn]

, mn < j ≤ mn+1

Here j is an integer and [a] is the largest integer ≤ a.

Lemma 5.7. The series (5.2) converges pointwise for all ρz, the operator Q1 is
well-defined and bounded Cv → Cv, and moreover, Q1f = f for all f ∈ Hv.

Proof. Let f ∈ Cv, and let us first assume that f is continuously differentiable
in Ω. We fix z ∈ C

d, |z| = 1, and 0 < ρ < R.
The definition (5.1) implies for all j ∈ Z

(5.12) fj(ρzeiϕ) = fj(ρz)eijϕ.

(Notice that if f is holomorphic then, for j ≥ 0, ρjfj is a homogeneous polynomial
of degree j while, for j < 0, fj = 0.) Since we assume f ∈ C1(Ω), the Fourier-series
of the C1-function ψf : ϕ 7→ f(ρzeiϕ) converges uniformly on the set [0, 2π]. The
numbers fj(ρz) are the Fourier-coefficients of ψf , hence, taking ϕ = 0, we see that

(5.13) f(ρz) =
∑

j∈Z

fj(ρz)ρ|j|,

where the sum converges pointwise for all z and ρ.
Let us still keep z fixed, but let ρ vary, and define the function g(z) of one complex

variable on Ω1 (see Section 3 ),

(5.14) g
(z)
f (ρeiϕ) = f(ρzeiϕ).

We immediately get the z-independent bound

‖g
(z)
f ‖v := sup

ζ∈Ω1

|g
(z)
f (ζ)|v(ζ) ≤ ‖f‖v.(5.15)
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Recall that in [12] the authors defined a projection PC , which is a bounded projection

from Cv(Ω1) onto Hv(Ω1). In view of (5.15), PCg
(z)
f ∈ Hv(Ω1) with a bound

‖PCg
(z)
f ‖v ≤ C‖f‖v.(5.16)

(5.2) and (5.12) imply

(Q1f)(ρzeiϕ) =
∑

n

(

∑

mn−1<j≤mn+1

tn,jfj(ρmn
z)ρjeijϕ

)

.

But this is exactly the definition of PCg
(z)
f according to (16), [12]. So we have

(PCg
(z)
f )(ρeiϕ) = (Q1f)(ρzeiϕ).(5.17)

Letting now also z vary, (5.17) and (5.16) imply

(5.18) ‖Q1f‖v = sup
z∈∂Bd

‖PCg
(z)
f ‖v ≤ C‖f‖v,

i.e. Q1 is bounded with respect to ‖ · ‖v.
Using the density of C1-functions in Cv we extend the definition of P to Cv as a

bounded linear operator.

If f ∈ Hv, then, according to (5.14), for a fixed z, |z| = 1, g
(z)
f ∈ Hv(Ω1). We

obtain PCg
(z)
f = g

(z)
f and hence Q1f = f . ¤

Lemma 5.8. If the operator Q2 is bounded with respect to ‖ · ‖v, then P = Q2Q1 :
Cv → Hv is a bounded projection.

Proof. Obviously, the assumption and Lemma 5.7 imply that P is bounded.
Looking at (5.3) and (5.4) it is also clear that Q2 leaves polynomials invariant,
hence, it does the same for all holomorphic functions: Q2f = f for all f ∈ Hv.

We need to show that Q2f is holomorphic for all f ∈ Q1Cv. Assume first that f
is, for some k ∈ Z

d, of the form

f(ρz) = ρ|k|γ(|z1|, . . . , |zd|)ek(z),

where z ∈ C
d, |z| = 1 and 0 ≤ ρ < R. We claim that Q2f = 0, if k /∈ N

d, and
Q2f(ρz) = ckρ

|k|zk for some constant ck, if k ∈ N
d. In the first case we may assume

without loss of generality that kd < 0. Let w = (w′, wd) ∈ C
d, where w′ ∈ C

d−1 and
wd is the last coordinate, and recall that w ∈ ∂Bd if and only if (w′, eiθwd) ∈ ∂Bd

for all θ ∈ [0, 2π]. By (6) in the proof of Proposition 1.4.7 of [13],

∫

∂Bd

f(ρw)

1 − 〈z, w〉
dσd(w) =

∫

∂Bd

1

2π

2π
∫

0

f((ρw′, ρeiθwd))

1 − 〈z, (w′, eiθwd)〉
dθdσd(w)

=

∫

∂Bd

1

2π

2π
∫

0

ρ|k|γ(|w1|, . . . , |wd|)ek(w
′, 0)eikdθ

1 − 〈z, (w′, eiθwd)〉
dθdσd(w).(5.19)

Now the kernel

1

1 − 〈z, (w′, eiθwd)〉
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is a sum of terms of the form fn(z, w′)e−inθw̄n
d with n ∈ N and some continuous

functions fn; taking into account the sign of kd, the integration with respect to θ
renders (5.19) equal to zero.

If k ∈ N
d, then a similar argument shows that all the integrals

∫

∂Bd

f(ρw)zlw̄ldσd(w)(5.20)

vanish, if l 6= k. We obtain
∫

∂Bd

f(ρw)

1 − 〈z, w〉
dσd(w) =

∫

∂Bd

f(ρw)zkw̄kdσd(w) = ckρ
|k|zk,(5.21)

i.e. a holomorphic function.
If f = Q1g for some g ∈ Cv, then (5.2) and the Stone-Weierstraß theorem ([14],

Section 5.7.) imply that f = f(ρz) can be approximated at least uniformly on the
compact subsets of Bd by functions of the form

N
∑

l=0

ρl
∑

k∈Zd

|k|=l

γk(|z1|, . . . , |zd|)ek(z)(5.22)

with γk ∈ C(∂Ω). For fixed ρ and z we infer from (5.3) and the previous case that
Q2Q1g can be approximated by holomorphic functions uniformly in a neighbourhood
of ρz, hence Q2Q1g is holomorphic. ¤

As the last topic of this section we consider operators connected with the coeffi-
cients tn,j.

Consider h ∈ Hv(Ω). Then for every multi–index k there exists an ak ∈ C such
that

(5.23) h =
∞

∑

j=0

hj, where hj(z) = hj(z1, . . . , zd) =
∑

k∈Nd

|k|=j

akz
k

Define

(5.24) Tnh =
∑

mn−1<j≤mn

tn,jhj +
∑

mn<j≤mn+1

tn,jhj.

Fix the number z ∈ C
d, |z| = 1, and consider the function of one complex variable,

f(ρeiϕ) = h(ρeiϕz),ρ ∈ [0, R[. An application of [12], Theorem 1, to f yields

Theorem 5.9. There are numbers c1 > 0, c2 > 0 such that for any h ∈ Hv(Ω) we
have

c1 sup
n

M∞(Tnh, ρmn
)v(ρmn

) ≤ ‖h‖v ≤ c2 sup
n

M∞(Tnh, ρmn
)v(ρmn

)

and

c1M∞(Tnh, ρmn
)v(ρmn

) ≤ ‖Tnh‖v ≤ c2M∞(Tnh, ρmn
)v(ρmn

) for all n.

Theorem 5.9 also implies that h ∈ Hv provided that h is holomorphic and
supn M∞(Tnh, ρmn

)v(ρmn
) < ∞.
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Since limn→∞ mn = ∞ we obtain limn→∞ ρmn
= R. Hence, if h ∈ (Hv)0, we even

have

(5.25) lim
n→∞

M∞(Tnh, ρmn
)v(ρmn

) = 0

6. Proof of Theorem 5.3, continued

As remarked in the previous section, the remaining thing is to prove that Q2 is
bounded with respect to the weighted sup-norm.

Fix k = (k1, . . . , kd) ∈ Z
d and, for z = (z1, . . . , zd) ∈ ∂Bd and zj = rje

iϕj , let ek(z)
be as in (2.1). It is well-known that the functions ek are orthogonal with respect to
the scalar product in L2(∂Ω, σd) ([13]). Let mn be the indices of (5.9) and let Xn

be the ‖ · ‖v–closed linear span of the functions f of the form

f(ρz) = ρlγ(|z1|, . . . , |zd|)ek(z)(6.1)

where z ∈ ∂Bd, 0 ≤ ρ < R, γ ∈ C(∂Bd), k ∈ Z
d with |k| = l and mn−1 < l ≤ mn+1.

We have Xn ⊂ Q1Cv for all n, since Q1 keeps functions of the form (6.1) invariant.
Now we extend the operators Tn of Theorem 5.9.

Proposition 6.1. There are linear operators T̃n : Q1Cv → Xn and c1 > 0, c2 > 0
such that, for any f ∈ Q1Cv,

sup
n

c1M∞(T̃nf, ρmn
)v(ρmn

) ≤ ‖f‖v ≤ sup
n

c2M∞(T̃nf, ρmn
)v(ρmn

)

and
c1M∞(T̃nf, ρmn

)v(ρmn
) ≤ ‖T̃nf‖v ≤ c2M∞(T̃nf, ρmn

)v(ρmn
)

Moreover, T̃n|Hv = Tn. Finally, T̃nT̃m = 0 if |n − m| > 1.

Proof. Fix f ∈ Q1Cv and z ∈ ∂Bd. Then, according to (5.2) and (5.14), g
(z)
f ∈

Hv(Ω1). Let Tn,1 be the operators of Theorem 5.9 in the case d = 1. Put (T̃nf)(ρz) =

(Tn,1g
(z)
f )(ρ). Then, clearly T̃nh = Tnh if h ∈ Hv(Ω). Now the proposition follows

from (5.18), Theorem 5.9 and (5.24). ¤

Next we bring the Cauchy kernel into play.

Lemma 6.2. We have Q2Xn ⊂ Xn ∩ Hv. Moreover, if f ∈ Q1Cv then

T̃nQ2f = T̃nQ2(T̃n−1 + T̃n + T̃n+1)f

Proof. In the proof of Lemma 5.8 we already verified that Q2f is holomorphic
for all f ∈ Q1(Cv). This implies Q2Xn ⊂ Xn ∩ Hv; see also the arguments leading
to (5.21).

To prove the second part of Lemma 6.2 fix f ∈ Q1Cv which is of the form (5.22).
We use T̃nγkek = 0, if k ∈ N

d and if |k| ≤ mn−1 or |k| > mn+1, which is a consequence
of Proposition 6.1. Hence T̃nQ2f = T̃nQ2(T̃n−1 + T̃n + T̃n+1)f. ¤

We need a technical lemma. Recall that, if f(reiϕ) =
∑

j∈Z
fj(r)e

ijϕ and

(6.2) (Wnf)(reiϕ) =
∑

|j|≤n

n − |j|

n
fj(r)e

ijϕ

then
∫ 2π

0

|(Wnf)(reiϕ)|dϕ ≤

∫ 2π

0

|f(reiϕ)|dϕ
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for any r (convolution with a Fejer kernel; see [6] for this inequality).

Lemma 6.3. There is a function c(t) > 0 satisfying the following:
For all integers 0 < p < q there exists a function

K(z) =
∞

∑

l=0

gl(|z|)z
l, z ∈ B1

such that
∫ 1

0

∫ 2π

0

(1 − r2)max(d−2,0)|K(reiϕ)|rdϕdr ≤ c(
q

p
)

and

gl(r) =

(

l + d − 1
d − 1

)

if p ≤ l ≤ q

Proof of Theorem 5.3, continued. Combining Proposition 6.1, Lemma 6.2
and the remark after Theorem 5.9 we see that, for the proof of Theorem 5.3, it
suffices to show that the maps Q2|Xn are uniformly bounded with respect to the
norm ‖ · ‖v. To this end we shall construct uniformly bounded operators Q2,n with
Q2,n|Xn

= Q2|Xn
.

Fix n and take K of Lemma 6.3 with p = [mn−1] and q = [mn+1]. For f ∈ Cv,
z ∈ ∂Bd, 0 ≤ ρ < R, define

(Q2nf)(ρz) =

∫

∂Bd

K(〈z, w〉)f(ρw)dσd(w)

By [13], Lemma 1.4.2., we have

(Q2nf)(ρz) =
1

2π

∫

∂Bd

∫ 2π

0

K(〈z, weiϕ〉)f(ρweiϕ)dϕdσd(w)

In view of Lemma 6.3 this implies, for f(ρz) = ρlγ(|z1|, . . . , |zd|)ek(z), where |k| = l,
mn−1 < l ≤ mn+1,

(Q2nf)(ρz) =

∫

∂Bd

(

l + d − 1
d − 1

)

〈z, w〉lf(ρw)dσd(w)

= (Q2f)(ρz)

We use (see [13], 1.4.5.(2),)
∫

∂Bd

|K(〈z, w〉)|dσd(w) =
d − 1

π

∫ 2π

0

∫ 1

0

(1 − r2)d−2|K(reiϕ)|rdrdϕ,

if d > 1, to show that ‖Q2n‖ ≤ c(mn+1/mn−1), where c is the function of Lemma
6.3. The bound (5.10) yields mn+1/mn−1 ≤ 1 + κ2 which proves that the Q2n are
uniformly bounded. ¤

The only remaining missing part is the following

Proof of Lemma 6.3. Put p̃ = (q − p)/2 and q̃ = (q + p)/2. We can assume that
p̃ and q̃ are integers (otherwise take q + 1 instead of q). For a function f(reiϕ) =
∑

j∈Z
fj(r)e

ijϕ put

Wf =
q̃Wq̃ − p̃Wp̃

q̃ − p̃
f.
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In view of (6.2) we have

(Wf)(reiϕ) =
∑

|j|≤p̃

fj(r)e
ijϕ +

∑

p̃<|j|≤q̃

q̃ − |j|

q̃ − p̃
fj(r)e

ijϕ.

Put (V f)(reiϕ) = eiq̃W (e−iq̃ϕf(reiϕ)). Since (q̃ + p̃)/(q̃ − p̃) = q/p we have
∫ 2π

0

|(V f)(reiϕ)|dϕ ≤
q

p

∫ 2π

0

|f(reiϕ)|dϕ for all r.

Moreover, (V f)(reiϕ) =
∑

l≥0 f̃l(r)e
ilϕ where f̃l = fl if p ≤ l ≤ q.

Let u(z) = (1 − |z|2)/|1 − z|2 be the Poisson kernel. If d = 1 then put K(z) =
(V u)(z).

Now let d > 1. Fix j ∈ Z+ with 1 ≤ j ≤ d − 1 and define

kj(z) = zp

(

1 − zq−p+1

1 − z

)2

+ (p + j − 1)V (zpu(z)).

Recall

zp

(

1 − zq−p+1

1 − z

)2

=

q
∑

l=p

(l + 1 − p)zl +
∑

l>q

alz
l for some al.

Moreover

V (zpu(z)) = V

(

−1
∑

l=−∞

zpz̄l +
∞

∑

l=0

zl+p

)

=

p−1
∑

l=0

bl(r)r
leilϕ +

q
∑

l=p

rleilϕ +

q+p
∑

l=q+1

bl(r)r
leilϕ

for some bl. Hence

(6.3) kj(re
iϕ) =

∑

l≥0

γl(r)r
leilϕ

with γl(r) = l + j for p ≤ l ≤ q. Fix r and put

k̃j(e
iϕ) = kj

(

r1/(d−1)eiϕ
)

.

Then define

(6.4) K(reiϕ) =
1

(d − 1)!
(k̃1 ∗ · · · ∗ k̃d−1)(e

iϕ),

where f ∗g(eiϕ) := (2π)−1
∫ 2π

0
f(ei(ϕ−θ))g(eiθ)dθ. In view of (6.3) we have K(reiϕ) =

∑

l≥0 δl(r)r
leilϕ with

δl(r) =
(l + 1) · · · (l + d − 1)

(d − 1)!
=

(

l + d − 1
d − 1

)

if p ≤ l ≤ q.

Finally,
∫ 2π

0

|kj

(

r1/(d−1)eiϕ
)

|dϕ

≤ rp/(d−1)

∫ 2π

0

|

q−p
∑

l=0

rl/(d−1)eilϕ|2dϕ + 2π(p + j)
q

p
rp/(d−1)
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≤ 2π

q−p
∑

l=0

r(2l+p)/(d−1) + 2π
p + d − 1

p
qrp/(d−1).

Here we used
∫ 2π

0
|u(reiϕ)|dϕ = 2π for any r. In view of (6.4) we obtain

∫ 2π

0

|K(reiϕ)|dϕ

≤
1

(d − 1)!

(

2π

q−p
∑

l=0

r(2l+p)/(d−1) + 2π
q + d − 1

p
qrp/(d−1)

)d−1

(6.5)

To bound this we remark that, for some constant c2,

rp/(d−1)(1 − r2) ≤
c2

p + 2d − 2
and

∞
∑

l=0

r(2l+p)/(d−1)(1 − r2) ≤ c2

for all 0 ≤ r ≤ 1. (To see the first one, use elementary calculus to find the maximum
of the given function of r. For the second one, use the sum of a geometric series.)
Hence (6.5) implies

∫ 1

0

∫ 2π

0

(1 − r2)d−2|K(reiϕ)|rdϕdr

≤
(c2)

d−2(2π)d−1

(d − 1)!

(

1 +
q + d − 1

p + 2d − 2
·
q

p

)d−2

·

∫ 1

0

(

q−p
∑

l=0

r(2l+p)/(d−1) +
q + d − 1

p
qrp/(d−1)

)

dr

≤
(c2)

d−2(2π)d−1

(d − 1)!

(

1 +
q + d − 1

p + 2d − 2
·
q

p

)d−2

·

(

q − p + 1

p + d − 1
(d − 1) + (d − 1)

q

p

)

≤ c(
q

p
)

for a suitable function c. ¤

7. Proof of Theorem 1.1, continued.

We only have to show (i) ⇒ (iii). Go back to Theorem 5.9 and to the operators Tn.
The definition (5.24) implies that Tn has finite rank. Let Cn be the space of all contin-
uous functions on Kn := ρmn

∂Bd endowed with the norm ‖f‖ = M∞(f, ρmn
)v(ρmn

).
The space Cn is, of course, isometrically isomorphic to C(Kn). Hence we find finite
dimensional subspaces En ⊂ Cn such that

sup
n

d(En, ℓ
dimEn

∞ ) :=

sup
n

inf{‖T‖ · ‖T−1‖ : T : En → ℓdimEn

∞ an isomorphism } < ∞

and En ⊃ TnHv|Kn
for all n. Theorem 5.9 together with (5.25) imply that the

map h 7→ (Tnh|Kn
) is an isomorphism from (Hv)0 into (

∑

n ⊕En)(c0) ∼ c0. On the
other hand Cv is a C(K)−space where K is the Stone-Czech compactification of Ω.
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According to Theorem 5.3, (Hv)∗∗0 ∼ Hv is complemented in Cv. This means that
Hv and hence also (Hv)0 are L∞−spaces. Thus (Hv)0 is isomorphic to a subspace
of c0 and a L∞−space. Then, by [8], (Hv)0 ∼ c0. ¤
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