4 research outputs found

    Cymerusâ„¢ iPSC-MSCs significantly prolong survival in a pre-clinical, humanized mouse model of Graft-vs-host disease

    No full text
    The immune-mediated tissue destruction of graft-vs-host disease (GvHD) remains a major barrier to greater use of hematopoietic stem cell transplantation (HSCT). Mesenchymal stem cells (MSCs) have intrinsic immunosuppressive qualities and are being actively investigated as a therapeutic strategy for treating GvHD. We characterized Cymerus™ MSCs, which are derived from adult, induced pluripotent stem cells (iPSCs), and show they display surface markers and tri-lineage differentiation consistent with MSCs isolated from bone marrow (BM). Administering iPSC-MSCs altered phosphorylation and cellular localization of the T cell-specific kinase, Protein Kinase C theta (PKCθ), attenuated disease severity, and prolonged survival in a humanized mouse model of GvHD. Finally, we evaluated a constellation of pro-inflammatory molecules on circulating PBMCs that correlated closely with disease progression and which may serve as biomarkers to monitor therapeutic response. Altogether, our data suggest Cymerus iPSC-MSCs offer the potential for an off-the-shelf, cell-based therapy to treat GvHD. Keywords: PKCθ, Graft-vs-host disease, Mesenchymal stem cell, Induced pluripotent stem cell, Humanized mouse mode

    A common antimicrobial additive increases colonic inflammation and colitis-associated colon tumorigenesis in mice

    No full text
    Triclosan (TCS) is a high-volume chemical used as an antimicrobial ingredient in more than 2000 consumer products, such as toothpaste, cosmetics, kitchenware, and toys. We report that brief exposure to TCS, at relatively low doses, causes low-grade colonic inflammation, increases colitis, and exacerbates colitis-associated colon cancer in mice. Exposure to TCS alters gut microbiota in mice, and its proinflammatory effect is attenuated in germ-free mice. In addition, TCS treatment increases activation of Toll-like receptor 4 (TLR4) signaling in vivo and fails to promote colitis in Tlr4-/- mice. Together, our results demonstrate that this widely used antimicrobial ingredient could have adverse effects on colonic inflammation and associated colon tumorigenesis through modulation of the gut microbiota and TLR4 signaling. Together, these results highlight the need to reassess the effects of TCS on human health and potentially update policies regulating the use of this widely used antimicrobial
    corecore