36 research outputs found
Recommended from our members
Accelerometery as a measure of modifiable physical activity in high-risk elderly preoperative patients: a prospective observational pilot study.
OBJECTIVES: To use wrist-worn accelerometers (Axivity AX3) to establish normative physical activity (PA) and acceptability data for the high-risk elderly preoperative population, to assess whether PA could be modified by a prehabilitation intervention as part of routine care, to assess any correlation between accelerometer-measured PA and self-reported PA and to assess the acceptability of wearing wrist-worn accelerometers in this population. STUDY DESIGN: Prospective, observational, pilot study. SETTING: Single National Health Service Hospital. PARTICIPANTS: Frail patients≥65 years awaiting major surgery referred to a multidisciplinary preoperative clinic at which they received a routine intervention aimed at improving their PA. 35 patients were recruited. Average age 79.9 years (SD=5.6). PRIMARY OUTCOMES: Normative PA data measured as a mean daily Euclidean norm minus one (ENMO) in milli-gravitational units (mg). SECONDARY OUTCOMES: Measure PA levels (mg) following a routine preoperative intervention. Determine correlation between patient-reported PA (measured using the Physical Activity Scale for the Elderly) and accelerometer-measured PA (mg). Assess acceptability of wearing a wrist-worn accelerometer measured using Visual Analogue Scale (VAS) questionnaire and device wear time (hours). RESULTS: Median baseline daily PA was 14.3 mg (IQR 9.75-22.04) with an improvement in PA detected following the intervention (median ENMO post intervention 20.91 mg (IQR 14.83-27.53), p=0.022). There was no significant correlation between accelerometer-measured and self-reported PA (baseline ρ=0.162 (p=0.4), post intervention ρ=-0.144 (p=0.5)). We found high acceptability ratings (median score of 10/10 on VAS, IQR 8-10) and wear-time compliance (163.2 hours (IQR 150-167.5) preintervention and 166.1 hours (IQR 162.5-167) post intervention). CONCLUSIONS: Accelerometery is acceptable to this population and increases in PA levels measured following an unoptimised routine clinical intervention which indicates that health behavioural change interventions may be successful during the preoperative period. Accelerometers may therefore be a useful tool to design and validate interventions for improving PA in this setting. TRIAL REGISTRATION NUMBER: NCT03737903
Feasibility of individualised severe traumatic brain injury management using an automated assessment of optimal cerebral perfusion pressure: the COGiTATE phase II study protocol.
INTRODUCTION: Individualising therapy is an important challenge for intensive care of patients with severe traumatic brain injury (TBI). Targeting a cerebral perfusion pressure (CPP) tailored to optimise cerebrovascular autoregulation has been suggested as an attractive strategy on the basis of a large body of retrospective observational data. The objective of this study is to prospectively assess the feasibility and safety of such a strategy compared with fixed thresholds which is the current standard of care from international consensus guidelines. METHODS AND ANALYSIS: CPPOpt Guided Therapy: Assessment of Target Effectiveness (COGiTATE) is a prospective, multicentre, non-blinded randomised, controlled trial coordinated from Maastricht University Medical Center, Maastricht (The Netherlands). The other original participating centres are Cambridge University NHS Foundation Trust, Cambridge (UK), and University Hospitals Leuven, Leuven (Belgium). Adult severe TBI patients requiring intracranial pressure monitoring are randomised within the first 24 hours of admission in neurocritical care unit. For the control arm, the CPP target is the Brain Trauma Foundation guidelines target (60-70 mm Hg); for the intervention group an automated CPP target is provided as the CPP at which the patient's cerebrovascular reactivity is best preserved (CPPopt). For a maximum of 5 days, attending clinicians review the CPP target 4-hourly. The main hypothesis of COGiTATE are: (1) in the intervention group the percentage of the monitored time with measured CPP within a range of 5 mm Hg above or below CPPopt will reach 36%; (2) the difference in between groups in daily therapy intensity level score will be lower or equal to 3. ETHICS AND DISSEMINATION: Ethical approval has been obtained for each participating centre. The results will be presented at international scientific conferences and in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT02982122
Recommended from our members
Dynamic Changes in White Matter Abnormalities Correlate With Late Improvement and Deterioration Following TBI: A Diffusion Tensor Imaging Study.
OBJECTIVE: Traumatic brain injury (TBI) is not a single insult with monophasic resolution, but a chronic disease, with dynamic processes that remain active for years. We aimed to assess patient trajectories over the entire disease narrative, from ictus to late outcome. METHODS: Twelve patients with moderate-to-severe TBI underwent magnetic resonance imaging in the acute phase (within 1 week of injury) and twice in the chronic phase of injury (median 7 and 21 months), with some undergoing imaging at up to 2 additional time points. Longitudinal imaging changes were assessed using structural volumetry, deterministic tractography, voxel-based diffusion tensor analysis, and region of interest analyses (including corpus callosum, parasagittal white matter, and thalamus). Imaging changes were related to behavior. RESULTS: Changes in structural volumes, fractional anisotropy, and mean diffusivity continued for months to years postictus. Changes in diffusion tensor imaging were driven by increases in both axial and radial diffusivity except for the earliest time point, and were associated with changes in reaction time and performance in a visual memory and learning task (paired associates learning). Dynamic structural changes after TBI can be detected using diffusion tensor imaging and could explain changes in behavior. CONCLUSIONS: These data can provide further insight into early and late pathophysiology, and begin to provide a framework that allows magnetic resonance imaging to be used as an imaging biomarker of therapy response. Knowledge of the temporal pattern of changes in TBI patient populations also provides a contextual framework for assessing imaging changes in individuals at any given time point
Mild traumatic brain injury recovery: a growth curve modelling analysis over 2 years
Background: An improved understanding of the trajectory of recovery after mild traumatic brain injury is important to be able to understand individual patient outcomes, for longitudinal patient care and to aid the design of clinical trials. Objective: To explore changes in health, well-being and cognition over the 2 years following mTBI using latent growth curve (LGC) modelling. Methods Sixty-one adults with mTBI presenting to a UK Major Trauma Centre completed comprehensive longitudinal assessment at up to five time points after injury: 2 weeks, 3 months, 6 months, 1 year and 2 years. Results: Persisting problems were seen with neurological symptoms, cognitive issues and poor quality of life measures including 28% reporting incomplete recovery on the Glasgow Outcome Score Extended at 2 years. Harmful drinking, depression, psychological distress, disability, episodic memory and working memory did not improve significantly over the 2 years following injury. For other measures, including the Rivermead Post-Concussion Symptoms and Quality of Life after Brain Injury (QOLIBRI), LGC analysis revealed significant improvement over time with recovery tending to plateau at 3-6 months. Interpretation Significant impairment may persist as late as 2 years after mTBI despite some recovery over time. Longitudinal analyses which make use of all available data indicate that recovery from mTBI occurs over a longer timescale than is commonly believed. These findings point to the need for long-term management of mTBI targeting individuals with persisting impairment.</div
Mild traumatic brain injury recovery: a growth curve modelling analysis over 2 years
Background An improved understanding of the trajectory of recovery after mild traumatic brain injury is important to be able to understand individual patient outcomes, for longitudinal patient care and to aid the design of clinical trials. Objective To explore changes in health, well-being and cognition over the 2 years following mTBI using latent growth curve (LGC) modelling. Methods Sixty-one adults with mTBI presenting to a UK Major Trauma Centre completed comprehensive longitudinal assessment at up to five time points after injury: 2 weeks, 3 months, 6 months, 1 year and 2 years. Results Persisting problems were seen with neurological symptoms, cognitive issues and poor quality of life measures including 28% reporting incomplete recovery on the Glasgow Outcome Score Extended at 2 years. Harmful drinking, depression, psychological distress, disability, episodic memory and working memory did not improve significantly over the 2 years following injury. For other measures, including the Rivermead Post-Concussion Symptoms and Quality of Life after Brain Injury (QOLIBRI), LGC analysis revealed significant improvement over time with recovery tending to plateau at 3–6 months. Interpretation Significant impairment may persist as late as 2 years after mTBI despite some recovery over time. Longitudinal analyses which make use of all available data indicate that recovery from mTBI occurs over a longer timescale than is commonly believed. These findings point to the need for long-term management of mTBI targeting individuals with persisting impairment
Challenges and opportunities in the care of chronic subdural haematoma: perspectives from a multi-disciplinary working group on the need for change.
INTRODUCTION: A chronic subdural haematoma (cSDH) is a collection of altered blood products between the dura and brain resulting in a slowly evolving neurological deficit. It is increasingly common and, in high income countries, affects an older, multimorbid population. With changing demographics improving the care of this cohort is of increasing importance. METHODS: We convened a cross-disciplinary working group (the 'Improving Care in Elderly Neurosurgery Initiative') in October 2020. This comprised experts in neurosurgical care and a range of perioperative stakeholders. An Implementation Science framework was used to structure discussions around the challenges of cSDH care within the United Kingdom. The outcomes of these discussions were recorded and summarised, before being circulated to all attendees for comment and refinement. RESULTS: The working group identified four key requirements for improving cSDH care: (1) data, audit, and natural history; (2) evidence-based guidelines and pathways; (3) shared decision-making; and (4) an overarching quality improvement strategy. Frequent transfers between care providers were identified as impacting on both perioperative care and presenting a barrier to effective data collection and teamworking. Improvement initiatives must be cognizant of the complex, system-wide nature of the problem, and may require a combination of targeted trials at points of clinical equipoise (such as anesthetic technique or anticoagulant management), evidence-based guideline development, and a cycle of knowledge acquisition and implementation. CONCLUSION: The care of cSDH is a growing clinical problem. Lessons may be learned from the standardised pathways of care such as those as used in hip fracture and stroke. A defined care pathway for cSDH, encompassing perioperative care and rehabilitation, could plausibly improve patient outcomes but work remains to tailor such a pathway to cSDH care. The development of such a pathway at a national level should be a priority, and the focus of future work
Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): A Prospective Longitudinal Observational Study
BACKGROUND: Current classification of traumatic brain injury (TBI) is suboptimal, and management is based on weak evidence, with little attempt to personalize treatment. A need exists for new precision medicine and stratified management approaches that incorporate emerging technologies. OBJECTIVE: To improve characterization and classification of TBI and to identify best clinical care, using comparative effectiveness research approaches. METHODS: This multicenter, longitudinal, prospective, observational study in 22 countries across Europe and Israel will collect detailed data from 5400 consenting patients, presenting within 24 hours of injury, with a clinical diagnosis of TBI and an indication for computed tomography. Broader registry-level data collection in approximately 20 000 patients will assess generalizability. Cross sectional comprehensive outcome assessments, including quality of life and neuropsychological testing, will be performed at 6 months. Longitudinal assessments will continue up to 24 months post TBI in patient subsets. Advanced neuroimaging and genomic and biomarker data will be used to improve characterization, and analyses will include neuroinformatics approaches to address variations in process and clinical care. Results will be integrated with living systematic reviews in a process of knowledge transfer. The study initiation was from October to December 2014, and the recruitment period was for 18 to 24 months. EXPECTED OUTCOMES: Collaborative European NeuroTrauma Effectiveness Research in TBI should provide novel multidimensional approaches to TBI characterization and classification, evidence to support treatment recommendations, and benchmarks for quality of care. Data and sample repositories will ensure opportunities for legacy research. DISCUSSION: Comparative effectiveness research provides an alternative to reductionistic clinical trials in restricted patient populations by exploiting differences in biology, care, and outcome to support optimal personalized patient management