157 research outputs found

    Gradual Wear Diagnosis of Outer-race Rolling Bearing Faults through Artificial Intelligence Methods and Stray Flux Signals

    Full text link
    [EN] Electric motors have been widely used as fundamental elements for driving kinematic chains on mechatronic systems, which are very important components for the proper operation of several industrial applications. Although electric motors are very robust and efficient machines, they are prone to suffer from different faults. One of the most frequent causes of failure is due to a degradation on the bearings. This fault has commonly been diagnosed at advanced stages by means of vibration and current signals. Since low-amplitude fault-related signals are typically obtained, the diagnosis of faults at incipient stages turns out to be a challenging task. In this context, it is desired to develop non-invasive techniques able to diagnose bearing faults at early stages, enabling to achieve adequate maintenance actions. This paper presents a non-invasive gradual wear diagnosis method for bearing outer-race faults. The proposal relies on the application of a linear discriminant analysis (LDA) to statistical and Katz¿s fractal dimension features obtained from stray flux signals, and then an automatic classification is performed by means of a feed-forward neural network (FFNN). The results obtained demonstrates the effectiveness of the proposed method, which is validated on a kinematic chain (composed by a 0.746 KW induction motor, a belt and pulleys transmission system and an alternator as a load) under several operation conditions: healthy condition, 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm hole diameter on the bearing outer race, and 60 Hz, 50 Hz, 15 Hz and 5 Hz power supply frequencies.This work was supported by the Spanish Ministerio de Ciencia Innovación y Universidades and FEDER program in the framework of the `Proyectos de I+D de Generación de Conocimiento del Programa Estatal de Generación de Conocimiento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+i, Subprograma Estatal de Generación de Conocimiento¿ (ref: PGC2018-095747-B-I00), and Consejo Nacional de Ciencia y Tecnología (CONACyT) under scholarship 652815.Zamudio-Ramirez, I.; Osornio-Rios, RA.; Antonino-Daviu, JA.; Cureño-Osornio, J.; Saucedo-Dorantes, J. (2021). Gradual Wear Diagnosis of Outer-race Rolling Bearing Faults through Artificial Intelligence Methods and Stray Flux Signals. Electronics. 10(12):1-22. https://doi.org/10.3390/electronics10121486122101

    High Rate Report Synchrophasor Technique during Dynamic Conditions

    Get PDF
    139–143Current industrial applications of synchrophasors in intelligent grids depend to a great extent on highly trustable measurements, mainly during dynamic conditions of a power system, like a power swing which exhibits simultaneous variations of amplitude and phase in both voltage and current. This work presents the assessment of the performance of a novel synchrophasor technique following tests of the dynamic section of the IEEE Std. C37.118.1-2011, which requests testing the simultaneous variations of amplitude and phase

    Diagnosis methodology based on deep feature learning for fault identification in metallic, hybrid and ceramic bearings

    Get PDF
    Scientific and technological advances in the field of rotatory electrical machinery are leading to an increased efficiency in those processes and systems in which they are involved. In addition, the consideration of advanced materials, such as hybrid or ceramic bearings, are of high interest towards high-performance rotary electromechanical actuators. Therefore, most of the diagnosis approaches for bearing fault detection are highly dependent of the bearing technology, commonly focused on the metallic bearings. Although the mechanical principles remain as the basis to analyze the characteristic patterns and effects related to the fault appearance, the quantitative response of the vibration pattern considering different bearing technology varies. In this regard, in this work a novel data-driven diagnosis methodology is proposed based on deep feature learning applied to the diagnosis and identification of bearing faults for different bearing technologies, such as metallic, hybrid and ceramic bearings, in electromechanical systems. The proposed methodology consists of three main stages: first, a deep learning-based model, supported by stacked autoencoder structures, is designed with the ability of self-adapting to the extraction of characteristic fault-related features from different signals that are processed in different domains. Second, in a feature fusion stage, information from different domains is integrated to increase the posterior discrimination capabilities during the condition assessment. Third, the bearing assessment is achieved by a simple softmax layer to compute the final classification results. The achieved results show that the proposed diagnosis methodology based on deep feature learning can be effectively applied to the diagnosis and identification of bearing faults for different bearing technologies, such as metallic, hybrid and ceramic bearings, in electromechanical systems. The proposed methodology is validated in front of two different electromechanical systems and the obtained results validate the adaptability and performance of the proposed approach to be considered as a part of the condition-monitoring strategies where different bearing technologies are involved.Peer ReviewedPostprint (published version

    Multiple-fault detection and identification scheme based on hierarchical self-organizing maps applied to an electric machine

    Get PDF
    Strategies of condition monitoring applied to electric motors play an important role in the competitiveness of multiple industrial sectors. However, the risk of faults coexistence in an electric motor and the overlapping of their effects in the considered physical magnitudes represent, currently, a critical limitation to provide reliable diagnosis outcomes. In this regard, additional investigation efforts are required towards high-dimensional data fusion schemes, particularly over the features calculation and features reduction, which represent two decisive stages in such data-driven approaches. In this study, a novel multiple-fault detection and identification methodology supported by a feature-level fusion strategy and a Self-Organizing Maps (SOM) hierarchical structure is proposed. The condition diagnosis as well as the corresponding estimated probability are obtained. Moreover, the proposed method allows the visualization of the results while preserving the underlying physical phenomenon of the system under monitoring. The proposed scheme is performed sequentially; first, a set of statistical-time based features is estimated from different physical magnitudes. Second, a hybrid feature reduction method is proposed, composed by an initial soft feature reduction, based on sequential floating forward selection to remove the less informative features, and followed by a hierarchical SOM structure which reveals directly the diagnosis and probability assessment. The effectiveness of the proposed detection and identification scheme is validated with a complete set of experimental data including healthy and five faulty conditions. The accuracy’s results are compared with classical condition monitoring approaches in order to validate the competency of the proposed method.Peer ReviewedPostprint (author's final draft

    Advantages and disadvantages on photosynthesis measurement techniques: A review

    Get PDF
    Through photosynthesis, green plants and cyanobacteria are able to transfer sunlight energy to molecular reaction centers for conversion into chemical energy with nearly 100% efficiency. Speed is the key as the transfer of the solar energy takes place almost instantaneously such that little energy is wasted as heat. How photosynthesis achieves this near instantaneous energy transfer is a longstanding mystery that may have finally been solved. Measurements of this process are useful in order to understand how it might be controlled and how the phytomonitoring of plant development to increase productivity can be carried out. Techniques in this sense have evolved and nowadays several have been used for this purpose. Thus, the aim of this paper is to present a review of the various methods and principles that have been used in measuring photosynthesis presenting the advantages and disadvantages of various existing measurement methodologies in order to recommend the most appropriate method according to the needs of specific investigations

    Diagnosis methodology for identifying gearbox wear based on statistical time feature reduction

    Get PDF
    Strategies for condition monitoring are relevant to improve the operation safety and to ensure the efficiency of all the equipment used in industrial applications. The feature selection and feature extraction are suitable processing stages considered in many condition monitoring schemes to obtain high performance. Aiming to address this issue, this work proposes a new diagnosis methodology based on a multi-stage feature reduction approach for identifying different levels of uniform wear in a gearbox. The proposed multi-stage feature reduction approach involves a feature selection and a feature extraction ensuring the proper application of a high-performance signal processing over a set of acquired measurements of vibration. The methodology is performed successively; first, the acquired vibration signals are characterized by calculating a set of statistical time-based features. Second, a feature selection is done by performing an analysis of the Fisher score. Third, a feature extraction is realized by means of the Linear Discriminant Analysis technique. Finally, fourth, the diagnosis of the considered faults is done by means of a Fuzzy-based classifier. The effectiveness and performance of the proposed diagnosis methodology is evaluated by considering a complete dataset of experimental test, making the proposed methodology suitable to be applied in industrial applications with power transmission systems.Peer ReviewedPostprint (published version

    Industrial data-driven monitoring based on incremental learning applied to the detection of novel faults

    Get PDF
    The detection of uncharacterized events during electromechanical systems operation represents one of the most critical data challenges dealing with condition-based monitoring under the Industry 4.0 framework. Thus, the detection of novelty conditions and the learning of new patterns are considered as mandatory competencies in modern industrial applications. In this regard, this article proposes a novel multifault detection and identification scheme, based on machine learning, information data-fusion, novelty-detection, and incremental learning. First, statistical time-domain features estimated from multiple physical magnitudes acquired from the electrical motor under inspection are fused under a feature-fusion level scheme. Second, a self-organizing map structure is proposed to construct a data-based model of the available conditions of operation. Third, the incremental learning of the condition-based monitoring scheme is performed adding self-organizing structures and optimizing their projections through a linear discriminant analysis. The performance of the proposed scheme is validated under a complete set of experimental scenarios from two different cases of study, and the results compared with a classical approach.Peer ReviewedPostprint (author's final draft

    Anomaly detection in electromechanical systems by means of deep-autoencoder

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksAnomaly detection in manufacturing processes is one of the main concerns in the new era of the Industry 4.0 framework. The detection of uncharacterized events represents a major challenge within the operation monitoring of electrical rotatory machinery. In this regard, although several machine learning techniques have been classically considered, the recent appearance of deep-learning approaches represents an opportunity in the field to increase the anomaly detection capabilities in front of complex electromechanical systems. However, each anomaly detection technique considers its own data interpretability and modelling strategy, which should be analyzed in front of the specificities of the data generated in an industrial environment and, specifically, by an electromechanical actuator. Thus, in this study, a comparison framework is considered including multiple fault scenarios in order to analyze the performance of four representative anomaly detection techniques, that is, one-class support vector machine, k-nearest neighbor, Gaussian mixture model and, finally, deep-autoencoder. The experimental results suggest that the use of the deep-autoencoder in the task of detecting anomalies of operation in electromechanical systems has a higher performance compared to the state of the art methods.Peer ReviewedPostprint (published version

    Diagnosis electromechanical system by means CNN and SAE: an interpretable-learning study

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Cyber-physical systems are the response to the adaptability, scalability and accurate demands of the new era of manufacturing called Industry 4.0. They will become the core technology of control and monitoring in smart manufacturing processes. In this regard, the complexity of industrial systems implies a challenge for the implementation of monitoring and diagnosis schemes. Moreover, the challenges that is presented in technological aspects regarding connectivity, data management and computing are being resolved through different IT-OT (information technology and operational technology) convergence proposals. These solutions are making it possible to have large computing capacities and low response latency. However, regarding the logical part of information processing and analysis, this still requires additional studies to identify the options with a better complexity-performance trade-off. The emergence of techniques based on artificial intelligence, especially those based on deep-learning, has provided monitoring schemes with the capacity for characterization and recognition in front of complex electromechanical systems. However, most deep learning-based schemes suffer from critical lack of interpretability lying to low generalization capabilities and overfitted responses. This paper proposes a study of two of the main deep learning-based techniques applied to fault diagnosis in electromechanical systems. An analysis of the interpretability of the learning processes is carried out, and the approaches are evaluated under common performance metrics.Peer ReviewedPostprint (published version
    corecore