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Multiple-fault Detection and Identification Scheme based on Hierarchical Self-1 

Organizing Maps applied to an Electric Machine 2 
 3 

Abstract— Strategies of condition monitoring applied to electric motors play an important role in the 4 
competitiveness of multiple industrial sectors. However, the risk of faults coexistence in an electric motor and the 5 
overlapping of their effects in the considered physical magnitudes represent, currently, a critical limitation to provide 6 
reliable diagnosis outcomes. In this regard, additional investigation efforts are required towards high-dimensional 7 
data fusion schemes, particularly over the features calculation and features reduction, which represent two decisive 8 
stages in such data-driven approaches. In this study, a novel multiple-fault detection and identification methodology 9 
supported by a feature-level fusion strategy and a Self-Organizing Maps (SOM) hierarchical structure is proposed. 10 
The condition diagnosis as well as the corresponding estimated probability are obtained. Moreover, the proposed 11 
method allows the visualization of the results while preserving the underlying physical phenomenon of the system 12 
under monitoring. The proposed scheme is performed sequentially; first, a set of statistical-time based features is 13 
estimated from different physical magnitudes. Second, a hybrid feature reduction method is proposed, composed by 14 
an initial soft feature reduction, based on sequential floating forward selection to remove the less informative 15 
features, and followed by a hierarchical SOM structure which reveals directly the diagnosis and probability 16 
assessment. The effectiveness of the proposed detection and identification scheme is validated with a complete set of 17 
experimental data including healthy and five faulty conditions. The accuracy’s results are compared with classical 18 
condition monitoring approaches in order to validate the competency of the proposed method. 19 

Keywords— condition monitoring; fault diagnosis; feature estimation; feature reduction; induction motor; self-20 
organizing feature maps; time series analysis; sequential selection; stator currents; temperatures; vibrations. 21 

1 INTRODUCTION 22 

Fault detection and identification have become critical aspects to allow a timely and accurate application of 23 
maintenance strategies to the modern industry machinery [1]-[3]. Most of the industrial applications are 24 
supported by electric motor which are used in the transformation of electrical energy into mechanical energy, 25 
in this regard, Induction Motors (IM) have been represented the most extended technology of rotating electrical 26 
machine due to its reliability, low cost and robustness [4]. However, despite of its characteristics, the appearance 27 
of unexpected faults may occur during its useful life period, thus, affecting the machinery availability, the 28 
industrial productivity and the economic benefits of the related industrial process. In this regard, condition 29 
monitoring strategies applied to the fault detection and identification are playing an important role to increase 30 
and ensure the availability of most of the industrial machinery. 31 

The malfunctioning problems that can occur in IM are, mainly, due to the appearance of electrical and 32 
mechanical faults [5]-[7]. In this sense, the most common electrical faults are those associated with problems 33 
in the stator and rotor windings, such as broken rotor bars and short-circuits; while mechanical faults are those 34 
related to problems of eccentricity and misalignment that are generated due to damages in bearings and 35 
couplings [8]-[10]. Currently, in most of the industrial processes, different variables are easily available, such 36 
as temperatures, stator currents, voltages, even mechanical vibrations [11]-[13]; indeed, the non-invasive 37 
installation of sensors is one of the most preferred strategies to assess the condition in industrial processes [11]. 38 
In this regard, a great deal of data-driven diagnosis methods have been proposed to identify the appearance of 39 
faults in IM-based electromechanical systems, yet, although advantageous results have been obtained, most of 40 
these proposals have been focused to address single fault modes [14]-[15]. Thereby, signal processing 41 
approaches that use a unique physical magnitude, usually stator currents or vibrations, represent the most 42 
common strategy for condition monitoring of electric machines [9], [16]. Nevertheless, the detection and 43 
identification capabilities of current condition monitoring approaches applied to electric motor faults must 44 
overcome new challenges. Specifically, multiple and non-expected causes of faults must be detected and 45 
recognized during the regular operation of electric motor based machinery. Indeed, this assumption represents 46 
a serious issue to allow a practical implementation of condition monitoring strategies in industrial systems, 47 



 

since the effects of different faults can be hidden or overlapped during the inspection. 1 

Condition monitoring strategies based on the combination of different physical magnitudes represent the 2 
most coherent approach aiming to provide the machine condition [12], [17]. In this regard, time domain, 3 
frequency domain and time-frequency domain are the three well-known approaches that have been widely 4 
applied during the characterization of the available physical magnitudes [2], [18]. However, although classic 5 
techniques based on frequency and time-frequency domain have been widely applied, most of these techniques 6 
requires a deep knowledge of the fault effects over the resulting frequency distributions of the physical 7 
magnitudes [19]-[22]. Moreover, as background noise and other unconcerned components may mask the 8 
patterns, some signal enhancement techniques are required to preprocess the original signals. Thus, considering 9 
an electromechanical system, where different components take place, it is possible that similar failure effects 10 
may be induced by different causes. For example, in industrial processes where rotating machinery is involved, 11 
the appearance of malfunctioning conditions, such as unbalance and misalignment, produce similar components 12 
in the vibrational spectrum at the rotating frequency and its corresponding harmonics [20]. Thereby, due to 13 
specific faults may appear hidden or overlapped, the fault identification represents a major issue when multiple 14 
fault sources are simultaneously considered. 15 

Although the consideration of a high-dimensional set of numerical features could increases the fault 16 
identification capability during the electric machine condition assessment, the inevitably calculation of 17 
redundant and non-significant information may affect the posterior fault detection and identification 18 
performance. In this regard, aiming to avoid low fault diagnosis performances and overfitted results, 19 
dimensionality reduction procedures are recommended to be applied in condition monitoring strategies [23]. 20 
The most well-known classical dimensionality reduction techniques that have been widely applied are Principal 21 
Component Analysis (PCA), and Linear Discriminant Analysis (LDA) [24]-[25]. Nevertheless, these two 22 
dimensionality reduction approaches are based on a specific objective function; thereby, PCA deals with the 23 
data variance maximization, while LDA aims to maximize distances between different data sets [26]-[27]. Such 24 
differences in criteria allow the combination of dimensionality reduction approaches with classification 25 
algorithms aiming to achieve specific classification ratios [28]. Indeed, this strategy, also known as wrapper 26 
approach, uses a predefined induction algorithm and its resulting performance as evaluation criteria during the 27 
dimensionality reduction process. This method implies higher computational costs, but, since the feature subsets 28 
resulting from a wrapper approach are evaluated by the modelling accuracies, significance of the reduced 29 
feature set is generally increased. In this regard, one of the most common wrapper-based methods is supported 30 
on the use of Sequential Floating Feature Selection (SFFS) [24], [29]. 31 

Finally, the classification algorithms play an important role in such data-driven condition monitoring 32 
methodologies performing the automatic detection and identification of the electric motor condition. In this 33 
regard, Neural Networks (NN), and fuzzy inferred systems represent the most commonly used classical 34 
classifiers [2], [30]-[31]; besides, classifiers like k-nearest neighbors, decision trees, Bayesian networks and 35 
support vector machines, have been also used [15], [17]. However, due to these techniques follow a supervised 36 
training approach, their application is usually related with the enhancement of the classification ratios. In this 37 
sense, according to Shannon’s rate-distortion theory, mutual dependencies among various sources and between 38 
the input and output spaces contain the actual intrinsic dimension of the data, and allows avoiding over-fitting 39 
responses of the classification algorithms. Thereby, the application of unsupervised learning approaches 40 
represents the most coherent processing procedure to retain the underlying physical phenomenon of the system 41 
under monitoring reducing overfitting risks. Regarding this problem, manifold learning methods have been 42 
implemented with the aim of preserving the information in a lower dimensional space [32]-[33]. Thus, Self-43 
Organizing Maps (SOM), are among the most used approaches. The SOM are based on a neural network grid 44 
that preserves most of the original distances between feature vectors representations in the original feature 45 
space; moreover, it also allows the mapping of high-dimensional input data onto a 2-dimensional space [34]. 46 
Although SOM leads to model the original data distribution following an unsupervised approach, each of the 47 



 

neuron units used during the original space characterization can be associated with a class label, from which a 1 
diagnosis inference can be carried out during the assessment of new measurements. 2 

Considering such state of the art in regard with the current challenges on condition monitoring applied to 3 
electrical machinery, the main contribution of this research work lies on the proposal of a novel detection and 4 
identification scheme. The proposed methodology is based on a feature-level fusion approach where the pattern 5 
characterization capabilities of different physical magnitudes are enhanced in order to deal with multiple fault 6 
scenarios, thus, reducing the false negative detection ratios and improving the faults identification. The 7 
contributions include also the validation of a hierarchical SOM structure as powerful pattern characterization 8 
tool with data visualization capabilities. The novelty of the proposed fault detection and identification scheme 9 
include the consideration of a statistical-time based feature reduction stage by means of a soft dimensionality 10 
reduction, and a hierarchical classification structure supported by SOM for data modelling and fault diagnosis. 11 
In order to validate the competency of the proposed diagnosis methodology, a complete set of experimental 12 
data is acquired during the working condition of an electromechanical system, where five different conditions 13 
are experimentally evaluated. Also, the results are compared with a classical fault detection and identification 14 
approach based on PCA and LDA for feature reduction and NN for classification. Notice that this is the first 15 
time that this data fusion based hierarchical diagnosis scheme is applied, and the obtaining results are promising 16 
to be suitable for multiple condition monitoring applications. 17 

2 THEORETICAL BACKGROUND 18 

2.1 Data-driven condition monitoring 19 

Most of the classic condition monitoring strategies are based on pattern recognition approaches and their 20 
structures are related with the accomplishment of three main tasks as follows. First, the calculation of numerical 21 
sets of features from the available physical magnitudes through the application of classic techniques based on 22 
the analysis in the time domain, frequency domain and time-frequency domain. Second, the consideration of 23 
feature reduction stages for highlighting the hidden fault characteristic patterns and for compressing the 24 
available information computed during the feature calculation. Finally, third, in a classification stage, the 25 
identification of the pattern among different classes, the fault conditions, is performed. 26 

In this regard, classifications algorithms that are directly fed by raw data sets of numerical features are 27 
susceptible to decrease the performances of their outcomes; aiming to overcome this issue, feature reduction 28 
processes have been normally applied by means of linear techniques to enhance specific characteristics; such 29 
as the data variance maximization through PCA, or improve the separation among different classes (operating 30 
conditions) by means of LDA. However, the limitations of such classic feature reduction approaches that have 31 
been pointed out by several studies indicate that problems usually are presented for dealing with large and 32 
disconnected data sets, and this is due to classic structures seek for global structures of the available data [35]-33 
[36]. Moreover, a feature vector is composed by a set of D calculated features from the available physical 34 
magnitudes, and the obtained feature vectors are represented into an D-dimensional space. Indeed, the 35 
information included in such D-dimensional space mostly has nonlinear structures; thereby, in order to 36 
overcome such drawbacks, manifold learning methods, as SOM, are being developed as superior approaches in 37 
the last years [37]-[38]. 38 

2.2 Self-organizing maps 39 

The SOM is an unsupervised learning algorithm based on neural networks, and its main objective is the 40 
preservation of the topological properties of a D-dimensional input data space during its projection to a reduced 41 
d-dimensional output space. As a result of its application, a predefined 2-dimensional output space represented 42 
by a neural network grid is obtained; indeed, the use of hexagonal or rectangular grids is the most preferred 43 
neural structures for representation [38]. The SOM neural network is composed by a set neurons which are 44 
spatially distributed and interconnected among them; where, each neuron of the grid represents a Matching Unit 45 
(MU). In this regard, the mapping is carried out by means of allocating each input data vector, dinj, j=1...M, to 46 



 

one of the considered neurons. Indeed, those closest weight vectors are called the Best Matching Unit (BMU). 1 
Thus, the position vector for each input data in the output space, doutj, is defined by the position that the 2 
corresponding BMU takes in the grid. During the training procedure of the SOM grid, the minimization of a 3 
cost function based on the error estimation is the goal to achieve. 4 

Classically, the performance of a trained SOM grid is evaluated though the estimation of the average 5 
quantization error, Eq. The Eq represents the average distance from each input data vector to its corresponding 6 
BMU, that is, the so called local topology mean error is estimated by following (1). 7 
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From a practical point of view, before to the training of the SOM network, the neuron grid composed by a 9 
predefined number of matching units is randomly initialized within the input data space, Fig. 1(a). Then, during 10 
the training, Fig. 1 (b), the MU’s grid is successively adapting the weights wni aiming to retain as much as 11 
possible the local topology of the measurements characterized in the initial feature space. Finally, in the trained 12 
grid may be evaluated new data, Fig. 1 (c), and through its evaluation, the Euclidean distance of a new 13 
measurement to each MU is computed. Thus, the nearest MU which is considered the BMU is then activated. 14 
As a result of this procedure, the input data space can be modelled by a small number of MU. Yet, although 15 
SOM is an unsupervised learning approach, during the training process, each MU can be associated to a specific 16 
machine condition through a supervised labelling process. Thereby, later, for a new measurement assessment, 17 
its diagnosis outcome can be obtained. It must be noted that, in the proposed fault detection and identification 18 
scheme, the quantization error, classically used only as a cost function during the training process, takes an 19 
important significance. Thus, during the assessment of a new measurement, its novelty degree in regard with 20 
the reference data distribution can be quantified. Hence, a high or low reliability of the diagnosis outcome will 21 
result from a high or low quantization error, respectively. 22 

 23 

3 PROPOSED MULTI-FAULT DETECTION AND IDENTIFICATION METHODOLOGY 24 

The proposed diagnosis methodology for the detection and identification of multiple faults in an electrical 25 
motor based actuator consists of four stages as Fig. 2 depicts. First, a set of available physical magnitudes are 26 
acquired in a data acquisition stage; preferably, the acquired information should include the occurrence of 27 
vibrations in the radial and tangential plane of the kinematic chain, one to three stator current phases, and some 28 
temperature signals distributed over the electric motor, for instance, three of them placed near the drive-end-29 

(a)  (b)  (c)  
 

Fig. 1. Representation of the self-organizing mapping procedure in a 2-dimensional input and output
spaces. (a) Input data samples, , and a randomly initialized 2 x 2 neuron grid, . (b) Resulting training 
process. The dotted lines represent the memberships regions of the matching units considering
Euclidian distances. The maximum distance between MU, dmax, corresponds to MU1 and MU2. (c) 
Assessment of a new input data sample, . Assignation to MU1 as closest matching unit with the 
corresponding individual quantization error Eq.  



 

bearing, the non-drive-end bearing, and the motor chassis. Second, in order to build a consecutive set of 1 
samples, the acquired signals are segmented in equal part of one second and then characterized by performing 2 
a feature calculation, in this regard, a set of ten statistical time-based features is computed from each segmented 3 

part of the available signals. The proposed set of features considers: mean (), RMS, standard deviation (ߪ), 4 
variance (2ߪ), shape factor (SFRMS), crest factor (CF), latitude factor (LF), impulse factor (IF), skewness (Sk) 5 
and kurtosis (Ku); indeed, these features have been successfully used in other works in which its mathematical 6 
equations may be found [18]. Consequently, 20 statistical time features are estimated from the two vibration 7 
signals, 10 statistical time features from one motor stator current, and 30 statistical time features from the three 8 
temperature signals; therefore, each measurement over the electric motor is characterized by a resulting data set 9 
of consecutive samples composed by 60 statistical time-based features. Next, third, aiming to increase the 10 
characterization capabilities, the feature reduction is proposed to be replicated in terms of three specific 11 
condition groups to be evaluated, that is: (i) healthy against the rest of faulty conditions, (ii) among all faulty 12 
conditions and, finally, (iii) among severity degrees of each fault if available. This organization of the data 13 
allows to improve the filtering and retaining of those features with the best discriminative capabilities and that 14 
better characterize each one of the conditions, this filtering is proposed to be carried out by a soft dimensional 15 
reduction approach based on feature selection through SFFS. Fourth, following the same condition groups, the 16 
mapping of the data distributions to perform the posterior diagnosis is carried out by means of the proposed 17 
hierarchical structure based on SOM. 18 

In this regard, during the on-line assessment of the proposed methodology over a new measurement, the 19 
feature selection as well as diagnosis stages are executed iteratively. The application of a hierarchical structure 20 
as a diagnosis scheme allows to address the assessment of multiple faults from a general point of view towards 21 
the particular. Thus, in a first layer, a two-class problem is considered with the aim of distinguish between the 22 
healthy condition and the rest of faulty conditions (generalized as faulty condition), that is, to determine whether 23 
a fault condition is present or not. In case of a healthy condition diagnosis, the corresponding probability degree 24 
is provided, and the diagnosis procedure ends. Otherwise, the next diagnosis layer is evaluated in regard with 25 
the identification of the fault among the considered machine faulty conditions. Once identified, the 26 
corresponding probability fault degree is also provided. Thus, in this second layer which fault is taking place is 27 
determined. Finally, in case of severity degrees availability for some of the diagnosed faults, a third diagnosis 28 
layer follows, from which the corresponding probability degree is estimated also, that is, to determine the fault 29 
severity degree. In this sense, from a general perspective, the condition assessment of the electromechanical 30 
system is addressed in cascade, as the flowchart of Fig. 3 depicts. 31 



 

 1 

 2 

 3 

As it was mentioned, the quantization error represents the distance from the input data vector, that is, the 4 
measurement under assessment, to its corresponding BMU during the SOM models evaluations. This 5 
information is proposed to be considered as a measure of the amount of previous knowledge that the SOM 6 
models have over such measurement, that is, a similarity degree in regard with the original data used during the 7 
training stage. Thus, in order to infer the reliability degree of the diagnosis outcome after each SOM evaluation, 8 
this information is proposed to be used. Indeed, during the training stage, the mapping of the input data vectors 9 
over their best matching units provides a mean quantization error, Ēq, that describes the average distance error 10 
between them. Thus, during the assessment of a new measurement, the resulting quantization error, Eq is 11 
analysed. Then, a Eq equal or less than the mean quantization error resulting from the SOM training process, 12 
Ēq, is associated with the highest reliability degree, R = 1, whereas an Eq bigger than the distance between the 13 
two further MUs, dmax, represents the lowest reliability degree R = 0. Finally, a Eq bigger than Ēq, and lower 14 
than dmax, will result in a reliability degree in the range between 1 and 0. Then, based in equation (2) the 15 
quantization error can be used to provide information related to the reliability of the condition monitoring. 16 

 
Fig. 2. Proposed diagnosis methodology based on a hierarchical SOM structure for identifying 

multiple faults in an induction motor. 

 
Fig. 3. General flowchart for the condition assessment of the electromechanical system. 
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4 EXPERIMENTAL SETUP 2 

The experimental test bench used to validate the proposed multiple-fault diagnosis methodology is based on 3 
a kinematic chain composed by an IM, a gearbox and a DC generator. A flow chart of the experimental test 4 
bench is shown in Fig. 4(a). Specifically, the IM is a 1492-W three-phase IM, model WEG00236ET3E145T-5 
W22, and to feed and control its rotational speed a variable frequency driver (VFD) is used, model 6 
WEGCFW08. Then, the IM is coupled to a 4:1 ratio gearbox, model BALDOR GCF4X01AA, driving its input 7 
shaft; subsequently, in turn, the output shaft of the gearbox drives the DC generator, model BALDOR-8 
CDP3604, which is used as a mechanical load. A picture of the experimental test bench is shown in Fig. 3(b). 9 

 10 
 11 

In this work, a set of different physical magnitudes are proposed to be acquired; in this regard, a tri-axial 12 

 

(a) 

 

(b) 

Fig. 4. Experimental test bench based on a kinematic chain used to validate the proposed diagnosis 
methodology. (a) Flow chart, wiring and mechanical connections. (b) Physical kinematic chain. 



 

accelerometer, model LIS3L02AS4, is fixed on the top of the gearbox to measure the vibration signatures. 1 
Although a tri-axial accelerometer has been used, only the perpendicular plane of the rotatory axis has been 2 
analyzed, since most of classical faults tend to affect the vibration modes in such axes. Moreover, it should be 3 
mentioned that the accelerometer is installed on the top of the gearbox due to it has been assumed that the 4 
occurrence of vibrations produced in the IM will travel through the kinematic chain; and consequently, are 5 
acquired by such sensor. On the other hand, in an industrial environment, the condition assessment may be 6 
performed by placing the vibration sensor in different parts of the machine. This assumption is asserted only if 7 
the vibration signals are acquired from the same. In this regard, the consideration of other different physical 8 
magnitudes may face and compensate the loss of information that is not acquired for the installed accelerometer 9 
sensor. Therefore, an IM stator current phase is acquired using a Hall-effect current sensor, model L08P050D15, 10 
from Tamura Corporation. In this proposal, just one stator current has been considered, however, if current 11 
phase imbalances are expected, the use of the three stator currents would be recommended. Besides, the 12 
temperature of the IM is also measured by means of three RTDs, model DM-301 from Labfancility LTD. One 13 
of the RTDs is placed at the bearing area in the frontal side of the IM, the other two RTDs are close to the rotor, 14 
in the lateral side of the IM. The installed accelerometers, Hall-effect sensor and RTDs, are mounted 15 
individually with its corresponding signal conditioning stage and its corresponding anti-alias filtering. To 16 
perform the data acquisition two 12-bit 4-channel serial-output sampling analog-to-digital converters, model 17 
ADS7841, from Texas Instruments are used as data acquisition system (DAS). The DAS is a development based 18 
on field programmable gate array technology which is a proprietary low-cost design. In order to perform a 19 
proper data acquisition, an analysis of the fault-frequency components that may be produced by the assessed 20 
electromechanical system was carried out. Thus, the sampling frequencies considered during the acquisition of 21 
vibrations, stator currents and temperatures are set to 3 kHz, 4 kHz and 1 kHz, respectively, and the DAS is 22 
programed for acquiring 300 kS, 400 kS and 100 kS, respectively, during 100 seconds when the IM is working 23 
during a steady-state regime. Indeed, it must be noted that previous to the data acquisition, the IM was started 24 
up to reach its thermal stability aiming that the temperature measurements were potentially significant to 25 
represent each one of the evaluated conditions. Besides, by considering different temperature signals is 26 
increased the potentiality of any fault detection and identification procedure, mainly, if these signals are 27 
acquired during the period of thermal stability of the IM and related components. Thus, the installation of 28 
temperature sensors in different places of the IM will provide meaningful information in regard with possible 29 
thermal patterns that may result from different fault conditions affectations. The consideration of different 30 
sampling frequencies plays an important role to perform the data acquisition during the condition monitoring; 31 
this is due to the different considered faults will tend to produce not similar effects over each one of the available 32 
physical magnitudes. That is, temperature is a physical magnitude of slow inertial, while vibration and stator 33 
current tend to respond in a faster way. Although different sampling frequencies are considered, it should be 34 
mentioned that the acquisition of vibrations and stator currents at the chosen frequencies will be enough if the 35 
frequency components and its harmonics related to considered faults would like to be analyzed. Besides, it 36 
should be mentioned that the acquired temperature signals are then subjected to digital decimation procedure 37 
and its frequency was reduced to 100 Hz. 38 

Five different experimental conditions have been considered: healthy (HE), bearing defect (BD), broken rotor 39 
bar (BRB), unbalance (UNB) and misalignment (MAL). The IM uses a bearing model 6205-2ZNR, thus, a 40 
similar bearing has been damaged by means of drilling a through-hole on its outer race with a tungsten drill bit 41 
of 1.191 mm diameter to generate the BD. Two severity degrees of BRB fault are produced by drilling a hole 42 
of 6 mm diameter in two rotor bar elements: at depth of 3 mm, corresponding to 22% of the transversal section 43 
of the rotor bar, ½ BRB, and at depth of 14 mm, corresponding to a complete transversal section of the rotor 44 
bar, 1 BRB. The UNB condition has been induced by a bolt attachment to one of the IM couplings in order to 45 
produce a non-uniform load distribution that takes the center of mass out of the IM shaft. The MAL condition 46 
is generated moving 5 mm the free end of the IM on its horizontal plane, as a result, an angular misalignment 47 
of 1.5 degrees between shafts was approximately produced. This degree of misalignment is within the standards 48 



 

that have been normally studied [8]. In Fig. 5 the set of faults artificially produced are shown. During the 1 
experimentation the IM is driven at different operating frequencies, that is, 5 Hz, 15 Hz and 50 Hz, producing 2 
an averaged rotating speed of 294 rpm, 890 rpm and 2985 rpm, respectively. Although the considered IM 3 
nominal frequency corresponds to 50 Hz, the use of lower operating frequencies, 5 Hz and 15 Hz, have been 4 
considered in order to make difficult the fault detection and identification due to the low speed levels produced. 5 
Thus, eighteen experiments, combining five different conditions and three operating frequencies, are 6 
considered. For each experiment, 100 one-second samples including information of all six acquired channels 7 
are available, thus, the available signals are segmented in equal part of one second to create a consecutive data 8 
set of samples. 9 

 10 

5 COMPETENCY OF THE METHOD 11 

Previous to the analysis of the proposed condition monitoring scheme, a fault assessment through a classic 12 
characteristic fault frequencies analysis is performed in order to emphasize the current limitations in front of a 13 
multiple-fault scenario. Indeed, although the appearance of faults in electric machines can be detected through 14 
classical approaches by the estimation of specific characteristic fault features (i.e. Fourier transform following 15 
classical motor current signature analysis), the identification of such faults represents a major issue when 16 
multiple fault sources are considered simultaneously. In this sense, and considering the faults included in this 17 
work, the UNB and MAL conditions are fault scenarios that may generate similar effects over classical physical 18 
magnitudes acquired during the condition monitoring of a rotating electrical machine as vibration or stator 19 
current. That is, the UNB condition generates a centrifugal force leading to high vibration amplitudes 20 
frequencies equal to 1 x RPM (1 x rotational speed), in the spectral analysis; while the MAL condition results 21 
in high radial and/or axial vibration which typically produce dominant frequencies at 1 x RPM and/or 2 x RPM, 22 
depending upon the degree of angular misalignment against the offset misalignment [20]. Both fault conditions, 23 
UNB and MAL, also generate effects over the stator current spectrum that can be identified by specific 24 
characteristic fault-related frequencies. However, both conditions tend to produce similar stator current 25 
harmonics as follows; for the UNB condition the classical characteristic fault frequencies are described by (3). 26 
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On the other hand, for the MAL condition, the characteristic fault frequencies occur through the appearance of 28 
sidebands around the fundamental current component [8], described by (4): 29 
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(a) 
 

(b) 
 

(c) 

 

(d) 
 

(e) 
Fig. 5. Set of considered faults tested in the experimental test bench. (a) Bearing defect. (b) ½ Broken 

rotor bar. (c) 1 Broken rotor bar. (d) Unbalance. (e) Misalignment. 



 

where fs is the electrical supply frequency, s is the unit-per slip, p is the number of pole pairs and fr is the 1 
mechanical rotor peed. 2 

Accordingly, by analyzing the theoretical effects that these faults may produce over the corresponding 3 
vibration and stator current signals, it can be concluded that both faults may appear overlapped, making more 4 
difficult the faults detection and their identification during the diagnosis assessment procedure and then, 5 
reducing the reliability of the condition monitoring system. In order to experimentally show such overlapping 6 
effect dealing with the MAL and UNB conditions, the vibration and the stator current signals in regard with the 7 
experimental test bench are analyzed. Thus, in Fig. 6 is shown the stator current spectrum at the closest region 8 
corresponding to fs + fr when the supply frequency was set to 50Hz. From Fig. 6, it is possible to notice that the 9 
fs + fr components of the UNB and MAL conditions appear at the same place. Although the amplitude of these 10 
components is slightly different, there is no practical difference to identify the actual machine condition since 11 
the amplitudes may be modified due to the fault severity; in this regard, the false negative detection ratios may 12 
be increased affecting the fault identification performance. Additionally, analysis performed through techniques 13 
based on frequency or time-frequency domains involve specific knowledge about the considered components 14 
under inspection and fault modes, such as information about electrical or mechanical characteristics and also 15 
the measurement of the rotational speed. 16 

 17 
Regarding the proposed condition monitoring method, in order to allow the hierarchical structure of the 18 

proposed multiple-fault detection and identification scheme the available data is grouped in different sets. Thus, 19 
in a first layer, the healthy or faulty condition of the kinematic chain is determined. In case of a fault diagnosis 20 
outcome, in a second layer the identification of the fault is carried out. Finally, in the third layer, the severity 21 
degree is determined, if available. Thereby, three data sets are designed. The first data set is formed by six-22 
hundred samples defined by 60 statistical features each. In this first data set, there are 100 samples of the healthy 23 
condition per each of the three operating frequencies, that is, three hundred samples labeled as healthy (HLT). 24 
Also, 25 samples per each of the three operating frequencies and each of the four faults considered, that is, three 25 
hundred samples labeled as faulty (FLT). The second data set is formed by three-hundred samples defined by 26 
60 statistical features each. In this second data set, there are 25 samples of the bearing defect condition per each 27 
of the operating frequencies, that is, seventy-five samples labeled as bearing defect (BD). There are 25 samples 28 
of the broken rotor bar condition per each of the operating frequencies, that is, seventy-five samples labeled as 29 
broken rotor bar (BRB). There are also 25 samples of the unbalance condition per each of the operating 30 
frequencies, that is, seventy-five samples labeled as unbalance (UNB). And also, there are 25 samples of the 31 
misalignment condition per each of the operating frequencies, that is, seventy-five samples labeled as 32 
misalignment (MAL). The third and last data set is formed by one-hundred and fifty samples defined by 60 33 
statistical features each. In this third data set, there are 25 samples of half-broken rotor bar condition per each 34 
of the operating frequencies, that is, seventy-five samples labeled as half-broken rotor bar (1/2 BRB). Also, 35 

 
Fig. 6. Classic condition monitoring assessment based on the stator current spectrum at the closest 

region to fs+fr when the supply frequency is set to 50Hz. 
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there is 25 samples of one-broken rotor bar condition per each of the operating frequencies, that is, seventy-five 1 
samples labeled as one-broken rotor bar (1 BRB). In order to provide a detailed explanation in regard to the 2 
dataset generation, in Table 1 are summarized the datasets that will be evaluated in each one of the different 3 
layers that compose the proposed diagnosis method. Thus, each one of the datasets shown in Table 1 include 4 
detail information about labels of the different classes and number of samples. Yet, although 100 one-second 5 
samples are available for each considered condition, only the necessary samples of one second were used to 6 
create the described data sets. 7 

 8 
 9 

Once the three data sets are generated, the proposed feature selection procedure is applied individually to 10 
each of them in order to detect and remove the less significant features from the initial feature set. For each of 11 
the three dimensionality reduction procedures, the SFFS aims to optimize a model composed by a subset of the 12 
original feature set that best fits and describes the corresponding labels. In Table 2, the resulting selected 13 
features for each of the three data sets are shown. Thus, for the first layer to distinguish between healthy or 14 
faulty conditions, the selected subset of features results in eight statistical time features. In the second layer, 15 
where the fault condition is identified, the data set is reduced to sixteen statistical time features. In the third 16 
layer to determine the severity degree, the resulting set is composed by seven statistical time features. As the 17 
results show, the number of selected features change for each one of the layers; this variation is mainly related 18 
to the complexity of the problem that is solved. Specifically, the reduced number of eight selected features for 19 
the first layer, is due to the addressed problem is considered as a two-class problem. Then, the complexity of 20 
the problem increases in the second layer and the number of selected features increases to sixteen features 21 
because the number of classes that must be separated and classified also increases. Finally, for the third layer a 22 
reduced number of seven features is also selected due to only two severity conditions must be separated. It 23 
should be noted that, analyzing the results, statistical time features from different physical magnitudes are 24 
present in all set, thus, leading to an effective feature-level fusion approach. A qualitative representation of the 25 
resulting data manifolds of the first, second and third layer is shown in Fig. 7(a), Fig. 7(b) and Fig. 7(c), 26 
respectively, by means of a principal component analysis projection. In this regard, the three principal 27 
components considered in each projection exhibits an accumulative variance of 59.17%, for the first layer, 28 
59.14% for the second layer, and 69.46% for the data third layer, which confirm the qualitative meaning of the 29 
representations. However, despite such qualitative sense, different clusters can be observed in the data 30 
distributions, which correspond to the affectation of the operating frequency conditions over the operating 31 
scenarios considered. 32 

First layer  Second layer  Third layer 

Label 
Samples per 

condition 
Total  Label 

Samples per 
condition 

Total  Label 
Samples per 

condition 
Total 

HLT (HLT)(100)(3) 300  BD (BD)(25)(3) 75  ½ BRB (½ BRB)(25)(3) 75 
FLT (BD)(25)(3) 75  BRB (BRB)(25)(3) 75  1 BRB (1 BRB)(25)(3) 75 
FLT (BRB)(25)(3) 75  UNB (UNB)(25)(3) 75     
FLT (UNB)(25)(3) 75  MAL (MAL)(25)(3) 75     
FLT (MAL)(25)(3) 75         

  600    300    150 

 
Table 1 - Resulting data sets generated to evaluate the proposed diagnosis methodology. 
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Physical magnitude First layer Second layer Third layer 

Vibration, tangential axis ̅ܨܵ ݔோெௌ, ܨܥ and ݑܭ - 
Vibration, radial axis ߪଶ and ܵ௞ ܨܫ ,ܨܥ and ܵ௞ ܵܨோெௌ 

Stator current ܴܨܵ ,ݔ̅ ܵܯோெௌ and ݔ̅ ݑܭ and ߪ 
Temperature 1 - ܨܵ ,ߪோெௌ, ܵ௞ and ݑܭ - 
Temperature 2 ̅ݔ and ܵ௞ ̅ݔ and ߪ ,ܵܯܴ ߪଶ, ܵܨோெௌ and ݑܭ 
Temperature 3 ܨܮ and ܵ௞ ܵ௞ - 

 
Table 2 - Resulting subsets of selected features by means of SFFS. 
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Fig. 7. PCA projections over the resulting selected sets of features for each of the three layers. (a) 

First layer’s data, HLT condition, , and FLT condition, . (b) Second layer’s data, BD condition, , 
BRB condition, , UNB condition, , and MAL condition, . (c) Third layer’s data, ½BRB condition, 

, and 1BRB condition, . 



 

Next, the modelling of such data set manifolds described by the selected sets of features is carried out by 1 
means of SOM. In this sense, the U-matrix represents the resulting mapping for each one of the considered 2 
SOM, in which the distances among neurons are represented. According to the proposed diagnosis scheme, and 3 
following the previous dimensionality reduction stage, three SOM instances are carried out. The first SOM, 4 
SOM1, is considered to model and determine later, the healthy or faulty condition of the kinematic chain, Fig. 5 
8(a). The second SOM, SOM2, is considered to model and determine later, the fault condition of the kinematic 6 
chain, Fig. 8(b). Finally, the third SOM, SOM3, is considered to model and determine later, the fault severity 7 
degree, Fig. 8(c). 8 

 9 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 8. SOM’s U-matrixes over the resulting selected sets of features for each of the three layers. The 

lighter the color between two neuron units in the U-matrix is, the larger is the relative distance 
between them. (a) SOM1 U-matrix, first layer’s data, HLT and FLT conditions. (b) SOM2 U-matrix, 



 

 1 

The three SOM instances have been initialized as 2-dimensional hexagonal grids of 10 x 10 neurons, that 2 
represents a total of 100 neurons to model the data manifolds during a 100 epochs batch algorithm training. It 3 
can be seen that each of the resulting SOM reveals different number and distribution of data clusters similarly 4 
to the PCA projections, represented by sets of near neurons far from other neuron groups. Thus, from the U-5 
matrix of SOM1, Fig. 8(a), it is appreciated a main data cluster, corresponding to the healthy condition, and 6 
other smaller clusters belonging to the rests of faulty evaluated conditions. Also, in Fig. 8(b), from the resulting 7 
U-matrix of SOM2, shows a set of clusters, corresponding to the different faulty conditions considered. Finally, 8 
from the U-matrix of SOM3 depicted in Fig. 8(c), different data clusters related to the two different severities 9 
of BRB fault condition are revealed. From the SOM training procedures, Qerror mean values of 0.21, 0.39 and 10 
0.13 are obtained for SOM1, SOM2 and SOM3, respectively. Also, a Qerror kurtosis values of 3.84, 3.96 and 3.73, 11 
is obtained for SOM1, SOM2 and SOM3, respectively, which means that measurements are normally distributed. 12 

Indeed, during the SOM training procedure, each initial neuron grid is adapted to the data manifold in order 13 
to preserve as much as possible the topological characteristics of the corresponding distribution. The SOM 14 
application is an unsupervised technique by nature, however, as it has been explained, the assignment of 15 
corresponding labels for each neuron after the corresponding SOM training is proposed. That is, each of the 16 
SOM neurons adopts, by a majority voting approach of the nearest data samples, the resulting label. In this 17 
regard it can be seen, in Fig. 9(a), that the resulting SOM1 is divided in two regions, the HLT condition and the 18 
FLT condition. In Fig. 9(b) four different classes are represented, BD, BRB, UNB and MAL. In Fig. 9(c) the 19 
two severities of broken rotor bar, that is, the ½BRB and the 1BRB, are represented. 20 



 

 1 
Then, a new measurement, once characterized by the corresponding set of features, is evaluated sequentially 2 

over the diagnosis layers following the proposed hierarchical evaluation rules. Thus, during each layer 3 
assessment, the label of the corresponding BMU is obtained. Also, the corresponding reliability value is 4 
estimated by combining partial reliability assessments following (2) and (5). It must be noted that in case of 5 
just one or two layer assessment, the reliability associated to the rest of not-evaluated layers is considered as 1.  6 

்ܴ௢௧௔௟ ൌ 	ܴௌைெభ
∗ ܴௌைெమ ∗ ܴௌைெయ

	 	 	 	 	 	 	 	 ሺ5ሻ	7 

Thus, each SOM model, preceded by its SFFS, represents a diagnosis layer, and the three diagnosis layers 8 
together comprise the proposed diagnosis structure that allows to obtain a diagnosis outcome with its 9 
corresponding reliability value. 10 

In this regard, considering the data subsets presented in Table 1, for each dataset that corresponds to the 11 
evaluated layer, four-fifth of the data has been used for training and one-fifth for test purposes during each of 12 
the 5-fold iterations. That is, i.e. for the first layer, 240 samples of the HLT condition are used for training 13 
purposed and 60 samples for the evaluation. Additionally, 60 samples from each faulty condition (240 samples 14 
considering all conditions) are used also during the training and 15 samples from each faulty condition are used 15 
for the evaluation (60 samples in total for considering all condition). Thereby, in Table 3 the aggregated 16 
confusion matrix computed during the training and test of the SOM1 is shown. The corresponding classification 17 
ratio achieved is 99.8% and 100% for the training and test, respectively. Similarly, in Table 4, the aggregated 18 
confusion matrix computed during the training and test of the SOM2 is shown. The corresponding classification 19 
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Fig. 9. Resulting SOM classification maps. (a) SOM1, HLT condition, , and FLT condition, .(b) 
SOM2, BD condition, , BRB condition, , UNB condition, , and MAL condition, .(c) SOM3, 

½BRB condition, , and 1BRB condition, . 

 

 

 



 

ratio achieved is 94.2% and 92.5% for the training and test, respectively. Finally, in Table 5, the aggregated 1 
confusion matrix computed during the training and test of the SOM3 is shown. The corresponding classification 2 
ratio achieved is 98.3 % and 99.2 % for the training and test, respectively. It must be noticed that for all diagnosis 3 
outcomes, the corresponding reliability ratio was above 90%.  4 

 5 
 6 

In order to highlight the complexity of the considered data set and the superiority of the proposed multiple-7 
fault detection and identification scheme, a comparison of the obtained results against those that may be 8 
obtained by classical approaches is performed. In this regard, classical data-driven approaches have been 9 
implemented considering the two most used variants for dimensionality reduction, that is, PCA and LDA, in 10 
combination with NN for pattern recognition. The PCA has been configured to retain more than 90% of variance 11 
from the original 60-dimensional input space. Also, the LDA has been configured retaining all features from 12 
the 80-th percentile in terms of maximum individual Fischer score revealed. The NN has been structured with 13 
one hidden layer composed by double number of neurons than the corresponding input layer. The analysis has 14 
been extended to the use of just one physical magnitude, that is, initial statistical time features from vibration, 15 
stator current or temperature, as well as the use of the whole feature sets of all signals. In Table 6 the resulting 16 
classification accuracies of such eight variants are summarized. This results clearly shown a lower performance 17 
of the diagnosis results for all variants in the classical framework. Most of electromechanical multi-fault 18 
problems exhibit a non-Riemannian data manifold in the considered feature space, that is, the feature vectors 19 
used to characterize the measurements behave as a disconnected sub-manifolds or clusters. Indeed, PCA seeks 20 
for a global structure of the data and, then, false data distribution characteristics are considered. On the other 21 
hand, although the LDA optimization function deals with multiple-class separation problems, the complexity 22 
of a whole multi-fault diagnosis scenario leads to global projections of the data, where specific classes 23 
separation opportunities are discarded for the sake of the global Fischer parameter estimation. Moreover, in 24 
regard with results of Table 6 performed by classic approaches, the classification performance is significantly 25 
improved by means of applying the proposed hierarchical structure. Indeed, from a collaborative point of view, 26 
due to the proposed method has the capability of filter automatically those features revealing hidden significant 27 
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Training  Test 
Actual 

HLT FLT  HLT FLT 

HLT 240 1  60 0 

FLT 0 239  0 60 

Table 3 – Confusion matrix of first layer, SOM1. 
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 BD BRB UNB MAL  BD BRB UNB MAL 

BD 222 4 0 10  58 0 0 8 

BRB 7 219 5 2  1 54 2 0 

UNB 0 10 235 0  0 5 58 0 

MAL 11 7 0 228  1 1 0 52 

Table 4 - Confusion matrix of second layer, SOM2. 
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Training  Test 
Actual 

½ BRB 1 BRB  ½ BRB 1 BRB 

½ BRB 237 3  60 1 

1 BRB 3 237  0 59 

Table 5 - Confusion matrix of third layer, SOM3. 



 

information, the consideration of a statistical time-domain set features extracted from vibration, stator currents 1 
and temperatures increase the identification of malfunctioning conditions. Thereby, the increase of performance 2 
resulting from the proposed multiple-fault identification scheme is, in part, due, to the hierarchical organization, 3 
since multiple operating frequencies and conditions considered lead to an increase of discrimination complexity. 4 
Furthermore, the proposed method also has the advantage of be highly adaptive to any domain of processing 5 
signals and estimated set of features. For this reason, the hierarchical structure proposes gathering similar data 6 
under a same label, and identifies gradually the patterns by a non-linear and performative approach resulting 7 
from the SFFS and SOM combination. 8 

 9 

6 CONCLUSIONS 10 

This work presents a novel diagnosis methodology for detection and identification of multiple faults in a 11 
kinematic chain driven by an induction motor under different operating frequencies. There exist third important 12 
aspects that should be highlighted about the proposed method. First, it is demonstrated that the use of different 13 
physical magnitudes allows to reach a better characterization of the different conditions assessed. Indeed, each 14 
one of the considered physical magnitudes reveals different capabilities to reflect the evaluated fault conditions; 15 
even more, by performing a feature-level fusion of these physical magnitudes through a statistical time-based 16 
characteristic, a high-performative high-dimensional feature set is built. Second, the application of an initial 17 
soft-feature selection stage based on SFFS over the original data sets allows to remove those features with the 18 
less discriminative capabilities, and the significance of the resulting sets for each of the considered layers is 19 
improved. Third, the consideration of a hierarchical structure based on SOM represents a high-performing 20 
approach dealing with a multiple-fault detection and identification, since the measurement under analysis is 21 
assessed gradually over modelled data manifolds that maintain the underlying physical phenomena taking place 22 
at the system under monitoring. In this work, six different conditions evaluated at three different operating 23 
frequencies have been assessed. It must be emphasized that under all these conditions, the proposed multiple-24 
fault detection and identification scheme exhibits a classification ratio of 91.57%. In comparison with classical 25 
diagnosis structures, the proposed methods improve the global classification ration by a 30% approximately. 26 
The obtained results make the proposed diagnosis methodology suitable to be applied for assessing the 27 
condition of kinematic chain driven by induction motor, and represents a promising diagnosis scheme to be 28 
applied to other faults and electric motor technologies in industrial applications. 29 
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