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 Abstract— The detection of uncharacterized events during 
electromechanical systems operation represents one of the most 
critical data challenges dealing with condition-based monitoring 
under the Industry 4.0 framework. Thus, the detection of novelty 
conditions and the learning of new patterns are considered as 
mandatory competencies in modern industrial applications. In this 
regard, this study proposes a novel multi-fault detection and 
identification scheme, based on machine learning, information 
data-fusion, novelty-detection and incremental learning. First, 
statistical time-domain features estimated from multiple physical 
magnitudes acquired from the electrical motor under inspection 
are fused under a feature-fusion level scheme. Second, a self-
organizing map structure is proposed to construct a data-based 
model of the available conditions of operation. Third, the 
incremental learning of the condition-based monitoring scheme is 
performed adding self-organizing structures and optimizing their 
projections through a linear discriminant analysis. The 
performance of the proposed scheme is validated under a complete 
set of experimental scenarios and results compared with a classical 
approach. 

Index Terms—Condition monitoring, Fault detection, Feature 
extraction, Incremental learning, Novelty detection, Machine 
learning. 

I. INTRODUCTION 
 he promotion of a sustainable industrialization represents 
one of the main targets considered in the sustainable 
development goals foreseen for the next decade [1]. In this 

regard, the deployment of an effective Industry 4.0 is critical to 
enable the regeneration of the industrial sector towards more 
efficient, reliable, resilient and competitive infrastructures. 
Indeed, the Industry 4.0 relies in the convergence between 
Information Technology (IT) and Operation Technology (OT), 
in order to reach industrial plants where the interconnectivity 
between virtual and physical worlds. Such interconnectivity 
allows the exploitation of data and the enhancement of 
advanced services as the condition monitoring of critical 
systems to detect and identify problems before they even occur, 
preventing downtimes and even planning future actions [2]. 

A great deal of industrial applications is supported by the 
transformation of electrical to mechanical energy through 
electric machines, which, nowadays, are particularly oriented to 
permanent-magnet synchronous motors (PMSM). The PMSM 
are considered a clear future choice due to their high-speed 
operation and precise torque control, high torque to current ratio 
as well as a high-power density and high efficiency [3-5]. 
However, despite its characteristics, the appearance of 
unexpected faults may occur at any time due to wear and tear 
of different parts, causing undesired breakdowns that affect 
productivity and, in consequence, economic effectiveness. 
Thus, the condition monitoring approaches based on data-
driven methods are highly demanded to increase the availability 
and efficiency of industrial equipment [6-7]. Yet, although a 
great deal of data-driven diagnosis methods have been 
proposed, most of them are focused on the characterization of a 
set of single faulty patterns previously defined. 

Indeed, the detection and identification of electromechanical 
system conditions present new challenges in the modern 
industry framework. Such requirement represents a serious 
issue, thereby, new fusion information strategies, based on the 
combination of different physical magnitudes, and the 
exploitation of databases by means of reliable data-driven 
methodologies, represent the most promising approaches to 
describe unequivocal patterns related to the different conditions 
[8-9]. Certainly, the detection of operating novelties, novelty 
detection, is considered as a required competency for the next 
generation of condition-based monitoring (CBM) schemes. 
Most of the available CBM approaches dealing with novelty 
detection are limited by [10-12]: (i) the incorporation of new 
scenarios to the initial models is not considered, (ii) the 
processing stage is focused on the detection of specific faults 
and, (iii) the models require a large amount of data for 
characterization. In this regard, classical incremental learning 
approaches are based on the re-training of the machine learning 
based solution once a new operating condition (i.e. fault) is 
detected. The most extended solution lies on the consideration 
of a linear feature reduction technique, as Principal Component 
Analysis (PCA), and Support Vector Machine (SVM), as 
domain based classifier and novelty detector [13-14]. This 
approach presents two main disadvantages: representative data 
of each scenario must be stored, and algorithms hyper-
parameters must be updated during each iteration. 

Thereby, the contribution of this work lies in the proposal of 
a data-driven monitoring methodology based on adaptive and 
incremental learning. The proposed methodology overcomes 
the need of representative data storage as well as the re-design 
of new classification and novelty detection structures each time 
new patterns appear. Thus, facing one of the current data 
science challenges in Industry 4.0: the detection, identification 
and learning of novel conditions of operations in PMSM based 
electromechanical systems. Indeed, the high-dimensional set of 
features estimated from the characterization of the considered 
physical magnitudes, stator currents and vibration signals, is 
exploited to design the digital model approach for novel faults 
detection and identification. Originality of this work includes 
the consideration of an incremental learning stage supported by 
a re-training procedure based on LDA projection, and the 
validation of the proposed fault detection and identification 
structure supported by Self-Organizing Maps (SOM) for data 
modeling, diagnosis and novelty assessment. It should be 
noticed that dealing with industrial applicability requirements, 
two additional benefits arise from the proposed methodology. 
First, the quantification of the reliability degree related to the 
diagnosis outcome, by means of a similarity analysis between 
the measurements under assessment and the training data base. 
Second, the identification of deviations over the nominal 
condition, which represents an important capability since 
unexpected faults not initially characterized may appear during 
the useful life of the electromechanical system.  

Industrial Data-driven Monitoring based on Incremental Learning applied to the 
Detection of Novel Faults 
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II. PROPOSED METHOD 

Most of condition-based monitoring proposals work under 
the premise that information about fault scenarios of the 
machine under monitoring is available. This consideration 
reduces, significantly, the reproducibility of the method for 
being implemented to industrial applications. Thus, the main 
considerations to be faced are: (i) the premise that only 
information of the healthy condition is initially available and, 
(ii) the adaptation of the fault detection and identification 
scheme in order to incorporate new conditions. In this regard, 
such challenges are addressed in this work by means of the 
proposed fault detection and identification methodology 
depicted in Fig. 1. The general structure of the methodology is 
intended to serve as a guide to extend such a condition 
monitoring scheme to other electrical machine-based systems 
presenting the same aforementioned circumstances; yet, the 
modules to process the data and the feature calculation have 
been proposed to obtain relevant information dealing with an 
electromechanical system. 

The proposed methodology is divided in four parts: (i) the 
feature set estimation, (ii) the initial data modeling stage, (iii) 
the on-line assessment, (iv) the incremental learning. 

A. Feature estimation 
During the continuous monitoring stage, vibration and stator 

current signals are acquired from the electromechanical system 
under inspection. Then, a set of ten statistical time-domain 
features is estimated from each physical magnitude following 
classical approaches. The set of statistical features is composed 
by: mean, RMS, standard deviation, variance, shape factor, 
crest factor, latitude facture, impulse factor, skewness, and 
kurtosis. The mathematical equations of the proposed set of 
features can be found in [15]. Although features from frequency 
domain and time-frequency domain could be also considered in 
order to enhance the characterization procedure, it has been 
demonstrated that the proposed set of statistical time-domain 
features perform properly dealing with condition assessment in 
electromechanical systems [16-17]. 

B. Training 
From a practical point of view, most of applications start with 

healthy behavior data. Thus, the proposed method considers the 

modeling of the available healthy data distribution by means of 
SOM technique in order to detect eventual novelty patterns. In 
fact, the topological characteristics of the data distribution are 
highly connected with the fault effects over the considered 
physical magnitudes and estimated statistical time-domain 
features. Thus, SOM is a neuron grid network which uses a 
learning rule based on the preservation of the topological 
properties of a d-dimensional manifold (i.e. initially, the data 
set corresponding to the healthy behavior), which allows a 
deeper characterization for eventual faults dealing with the 
novel occurrence of malfunction conditions. In fact, 
considering only the healthy condition, a one-class problem 
arises, that is, the known class corresponding to the healthy 
condition and unknown class corresponding to any other 
behavior, that is, novel conditions. 

The SOM neuron grid consists of a predefined number of 
neurons known as Matching Unit (MU), which are randomly 
initialized and successively adapted in order to retain as much 
as possible the topological properties of the original data 
distribution during the training process. Later, new data 
samples ae evaluated over the resulting grid, topologically 
representative of the original data manifold. The Euclidean 
distance to each MU is estimated, and the nearest neuron is 
activated as Best Matching Unit (BMU), inheriting all the 
properties (i.e., class and membership degree) [18]. 

C. Operation 
As the monitoring of the machine under inspection 

progresses, eventual novel patterns will be identified. In case of 
novel condition, the incremental learning stage is triggered to 
incorporate the new pattern into the novelty detection and fault 
identification structure. In this sense, the quantization error, Eq, 
represents the distance of the data vector, that is, the 
measurements under assessment, to its BMU. Accordingly, the 
Eq resulting from a measurement assessment reveals the 
amount of knowledge that the corresponding SOM model has 
over such data point, that is, a similarity degree in regard with 
the original data used during the corresponding SOM model 
training. Indeed, during the training stage, the mapping of the 
data distribution provides a mean quantization error, Ēq, 
describing the average distance error between the data set and 
the corresponding MU set. Then, during the assessment stage, 
quantization errors, Eq, within the Ēq obtained during the 

 
Fig. 1. Flow chart of the proposed multi-fault detection and identification scheme based on adaptive and incremental learning. Training stage: modeling of 
the healthy condition. Operation stage: distance estimation between the measurements under assessment and all neurons of the models to determine the 
diagnosis or novelty degree of the measurements. Learning stage: new model generation and optimized projection to maximize separation among models. 
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training, Ēq-training, represent the lowest novelty degree, Nd=0, 
since the measurement is understood as known. An Eq between 
the Ēq obtained during the training, Ēq-training, and the maximum 
distance obtained during the training, dmax-training, represents a 
proportional novelty degree from 0 to 1. Finally, an Eq bigger 
than the maximum distance obtained during the training, dmax, 
results in the highest novelty degree, Nd=1, since the 
measurement is understood as unknown. The Eq is, then, used 
to provide information regarding the novelty degree of the 
measurement under analysis following the next equation: 

𝑁𝑁𝑑𝑑 =

⎩
⎨

⎧ 𝐸𝐸𝑞𝑞 ≤ 𝐸𝐸�𝑞𝑞−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,                                 0

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 > 𝐸𝐸𝑞𝑞 > 𝐸𝐸�𝑞𝑞−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,   1− 𝐸𝐸𝑞𝑞−𝐸𝐸�𝑞𝑞−𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐸𝐸�𝑞𝑞−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐸𝐸𝑞𝑞 > 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,                            1

    (11) 

D. Learning 
The incremental learning procedure is performed by 

considering the following steps: 
Step 1. The incremental learning is only carried out whether 

a novelty detection occurs, that is, novelty degree Nd=1. 
Step 2. A new SOM based model is trained considering the 

data related to the new class distribution.  
Step 3. The available SOM based models are subjected to a 

dimensionality reduction procedure by means of LDA 
projection resulting into a two-dimensional projection 
maximizing classes separation and defining the know 
information. 

Through these three steps, the incremental learning 
procedure is carried out. It should be noticed that this approach 
allows including new information to the proposed monitoring 
system without need of access to the measurements that were 
used initially for the training of the SOM models. The training 
of the new model is supported by the selection of the 
configuration hyper-parameters, specifically, the number of 
neurons to be used and the initial shape of the structure. The 
SOM structure depends on the number of available data points 
and its complexity in terms of distribution. However, as most 
of works dealing with SOM algorithm suggest, sheet-type 
structures composed by a number of neurons following a 1:10 
ratio in regard to the available data represents a good tradeoff 
between structure complexity and performance, and this is the 
rule proposed to be followed in this work [19-20]. 

III. EXPERIMENTAL SETUP 
In order to validate the performance of the proposed 

methodology, different operating patterns have been considered 
in a laboratory scale test bench. The experimental test bench is 
composed of two identical electric motors, a gearbox, and a 
screw shaft. One of the electric motors is the motor under study 
which is used as the driving motor, this motor drives the input 
shaft of the gearbox and the output shaft of the gearbox drives, 
in turn, the screw shaft that performs a displacement of a 
movable part. The electric motors belong to the model ABB-
SPMSMs and have 3 pairs of poles, a rated torque of 3.6 Nm, 
230 Vac, and a rated rotational speed of 6000 rpm. To drive and 
control these motors an ABB power converters model ACSM1 
is used. The mechanical vibrations and the stator currents are 
continuously acquired by means of a triaxial accelerometer and 
current probes, respectively. The acquisition is performed 
through a PXIe 1062 data acquisition system from National 

Instruments with a sampling frequency of 20kS/s to acquire the 
measured signals at one second of sampling time. A flowchart 
of the electromechanical system and the data acquisition is 
shown in Fig. 2. 

 
Fig. 2. Experimental test bench considered to evaluate the effectiveness of the 
proposed incremental learning approach for the novelty fault identification. 
 

Four different conditions have been experimentally tested. 
The first condition is the healthy condition (HLT). The second 
condition is degraded bearing (DB), where the inner and the 
outer raceways of the non-end bearing have been uniformly 
scraped aiming to produce a generalized roughness defect. The 
third condition is partial demagnetization of the electric motor 
(DEM). Such condition considers around 50% of nominal flux 
reduction in one pair of poles. Finally, the fourth condition, a 
static eccentricity (ECC) has been produced by means of 
attaching a bolt in the output shaft of the gearbox. All these 
conditions have been evaluated under different experiments, 
thus, two-speed setpoints combined with two different torque 
patterns setpoints have been considered, 1500 rpm, 3000 rpm, 
and, 0 % and 50 % of the nominal rated torque, respectively. 
Consequently, each considered condition has been 
experimentally evaluated under four different operating 
regimes; fifty measurements were performed for each 
condition. It must be noticed that the data imbalance represents 
a critical issue in most data science challenges and, in particular 
dealing with electromechanical systems, since the normal 
operating condition is the most represented usually [21-22]. 
However, the proposed methodology avoids the non-desired 
effects of such situation since the adaptive nature of the self-
organizing maps technique considered in the proposed 
methodology characterizes topological aspects of the data 
manifold as data density, independently of the data number. 

IV. RESULTS AND DISCUSSION 
Each physical magnitude acquired during the operation of the 

electromechanical system is characterized through the 
estimation of the proposed set of ten numerical statistical time-
domain features. Thus, the initial available condition (i.e. HLT) 
is characterized by a high-dimensional set of fifty statistical 
features. Then, the first fault detection and identification model 
is trained by mapping such high-dimensional set of features 
corresponding to the HLT condition through a first SOM 
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neuron grid model. Thus, the first data modeling is performed 
and represented by the SOM1 grid, in which only information 
related to the HLT condition is considered during the training 
procedure. A qualitative representation of the resulting 50-
dimensional data manifold of this initial HLT condition by 
means of a 2-dimensional PCA projection is shown in Fig. 3(a); 
and, the resulting 2-dimensional PCA projection of the 
predefined 10 x 10 SOM neuron grid is shown in Fig. 3(b), 
which represents the SOM1 model. From both figures, it can be 
observed that HLT topological data distribution and SOM 
neuron distribution match properly. 

 

b)  
Fig. 3. Qualitative representation of the resulting 50-dimensional data manifold 
of this initial HLT condition. (a) PCA projection of available measurements. 
(b) PCA projection of resulting SOM1 neurons. 

The SOM model performance is quantitatively defined by its 
quantization error. That is, the mean distance from each 
available measurement to its BMU, is represented by the 
average quantization error, Ēq. Tthe resulting mean 
quantization error during the training process of this SOM1 is 
5.23. In order to evaluate the performance of this first model, a 
first test set, test set 1, is evaluated. In Table I is specified the 
content of each test set used during the experimental validation, 
including known and unknown class conditions. Specifically, in 
this test set 1, the known class corresponds to the HLT 
condition, while the unknown class corresponds to the bearing 
defect (BD) condition. The evaluation of this novel faulty 
condition (i.e. BD), over the SOM1 results in a Ēq of 167.03. 
Indeed, an increase in the mean quantization error is due to the 
detection of a different condition in regard to the known data 
distribution. That is, such increase is produced because the 
topological characteristics of the database used during the 
training (composed by the HLT condition), are different from 
the topological properties of the database used during the 
evaluation (composed by the BD condition). In Fig. 4 is shown 
a qualitative representation, obtained by means of a PCA 
projection, of the resulting SOM1 model together with the 
resulting 50-dimensional data manifold of the BD condition. 

 

a)  

b)  
Fig. 4. 2-dimensional PCA projection resulting from the evaluation of SOM1. 
(a) HLT and BD data projection. (b) zZoom over the HLT data with the SOM1 
neurons. 

The Eq values obtained during the assessment of both 
conditions over the SOM1 are shown in Fig. 5, where the first 
200 test measurements, corresponding to the HLT condition, 
exhibit Eq values within the range of the Ēq, 5.23, while, the Eq 
values of the next 200 measurements, corresponding to the 
unknown class condition (i.e. BD), exhibit values over 100. 
Such increase in the Eq value reveals a novelty detection. It 
must be noted that, for both conditions, HLT and BD, the four 
different operating conditions were considered, thus, leading to 
variation in the obtained Eq values within the same condition. 

 
Fig. 5. Resulting quantization error during the assessment of the known class 
HLT and unknown class BD over the first model, SOM1. 

Once the unknown condition is detected, the knowledge of 
the novelty detection structure must be updated to include the 
pattern related to the new detected condition. Thus, such data 
modeling is carried out by means of a second novelty detection 
model, SOM2, represented by a new 10 x 10 neuron grid. 

-5 0 5

1st Principal component

-6

-4

-2

0

2

4

6

8

2n
d 

Pr
in

ci
pa

l c
om

po
ne

nt

HLT data

-6 -4 -2 0 2 4 6
1st Principal component

-4

-3

-2

-1

0

1

2

3

4

2n
d 

Pr
in

ci
pa

l c
om

po
ne

nt

HLT SOM neurons

-100 0 100 200 300 400 500 600

1st Principal component

-60

-40

-20

0

20

40

60

80

2n
d 

Pr
in

ci
pa

l c
om

po
ne

nt

HLT data

BD data

-6 -4 -2 0 2 4 6

1st Principal component

-6

-4

-2

0

2

4

6

8

2n
d 

Pr
in

ci
pa

l c
om

po
ne

nt

HLT data

HLT SOM neurons
HLT data

HLT SOM neurons

0 50 100 150 200 250 300 350 400

Samples

0

100

200

300

400

500

600

E
q

e

HLT

Novelty

TABLE I 
DETAIL OF TRAINING AND TEST SETS 

Test 
case Training set Test set 

Known class Unknown class 
1 HLT HLT BD 

2 HLT, BD HLT, BD DEM 

3 HLT, BD, 
DEM HLT, BD, DEM ECC 
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Thereby, during the model trining of such BD condition, an 
averaged quantization error, Ēq, of 18.96 is obtained. Thus, the 
new novelty detection structure is composed of two models, 
SOM1 and SOM2, that represent the data distribution of the two 
known class conditions HLT and BD, respectively. A 
qualitative representation of the resulting SOM1 and SOM2 
models by means of a 2-dimensional PCA projection is shown 
in Fig. 6(a), and the resulting SOM2 model represented by the 
U-Matrix is shown in Fig. 6(b). Certainly, the unified distance 
matrix, the U-matrix, applied over the resulting SOM2 trained 
structure, allows the visualization of distances between the 
weight vector adjacent neuron units in the defined two-
dimensional map. Specifically, the U-matrix represents the 
distances between neurons of such trained SOM where darkest 
areas depict those areas in the map where the data 
concentrations are presented (there exist smallest distances 
between neurons), and lightest areas depict boundaries between 
clusters (there exist bigger distances between neurons). It is 
shown in Fig. 6(b) that three main large areas can de 
distinguished, which means that the BD data behaves as 
neighbor clusters. 

a)  

b)  
Fig. 6. Updated novelty detection structure. (a) Qualitative representation of the 
resulting 50-dimensional data manifold of the HLT and BD known conditions 
trough the SOM1 and SOM2 neurons. (b) Detail of the resulting U-matrix 
resulting from the SOM2 model. The lighter the color between two neurons 
units is, the larger is the relative distance between them. 

In this regard, if a new unknown condition takes place, the 
current novelty detection structure will be assessed to perform 
its detection and, if proceed, to update the current knowledge 
and increase the novelty detection structure again. In order to 
enhance the novelty detection capabilities of the proposed 
novelty detection structure, it is proposed the application of a 
linear projection supported by LDA. That is, through LDA 
projection, the 50-dimensional space containing SOM1 and 
SOM2 is reduced into 2-dimensional space called detection and 
identification space, where the separation between SOM 
models is augmented due to the discriminant capabilities of the 

LDA. Consequently, the new 2-dimensional space allows 
obtaining a visual representation of the 50-dimensional spaces 
represented by the neuron grids of the involved models. 

Considering the experimental case under analysis, the LDA 
projection of the two SOM neuron grids, SOM1 and SOM2, 
results in the 2-dimensional projection shown in Fig. 7. Thus, 
the HLT and BD conditions are represented by the obtained 
projection in which both conditions appear separated by 
different clusters. 

 
Fig. 7. 2-dimensional projection performed by the LDA over the two available 
model, SOM1 and SOM2. 

Consequently, as aforementioned, the appearance of a new 
unknown condition has to be assessed and detected by the 
current novelty detection structure composed by SOM1 and 
SOM2. Then, in case of novel condition, such unknown patterns 
would be characterized by another SOM based model and, then, 
a new projection would be also obtained by carrying out a 
dimensionality reduction of all SOM grids through the LDA. In 
this sense, aiming to highlight the effectiveness of the proposed 
method, another test case, test case 2, with known and unknown 
classes is evaluated through the current novelty detection 
structure composed by SOM1 and SOM2. The evaluation of 
such test case 2 results in an averaged quantization error, Ēq, of 
152.59 and 72.97 from SOM1 and SOM2 respectively. Hence, 
the novelty detection is performed by comparing these values 
with those obtained during the training of the corresponding 
novelty models, SOM1 and SOM2. This detection capability is 
quantitative represented in Fig. 8(a) and Fig. 8(b) where the Eq 
values obtained during the test case 2 evaluation is shown. 

a)  

b)  
Fig. 8. Quantization error achieved during the assessment of the known classes 
HLT and BD and unknown class DEM over available SOM’s. (a) Assessment 
over SOM1 model. (b) Assessment over SOM2 model. 
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Because a novel condition has been detected, the knowledge 

of the novelty detection structure is updated and the dataset of 
such unknown condition has to be modeled by a new SOM grid. 
Specifically, the novel detected condition belongs to an 
eccentricity condition (ECC). Once the data modeling is 
performed, the ECC pattern is represented by the third novelty 
detection model, a 10 x 10 neuron grid, SOM3, with an averaged 
quantization error of 6.52 obtained during its training. As a 
result, the new novelty detection structure is composed of three 
models: SOM1 representing the HLT condition, SOM2 
representing the BD condition and SOM3 representing the ECC 
condition. Then, the three SOM models are again subjected to 
a dimensionality reduction procedure by means of the LDA 
projection. The resulting 2-dimensional projection is shown in 
Fig. 9. The three already known conditions are represented by 
different clusters that are perfectly separated from each other. 

 
Fig. 9. 2-dimensional LDA projection over the three SOM grids: SOM1, SOM2 
and SOM3. 

Finally, a third test set, test set 3, is evaluated over the current 
novelty detection structure composed by SOM1, SOM2, and 
SOM3. Accordingly, the averaged quantization errors obtained 
during the evaluation of the unknown class of such third test 
case through SOM1, SOM2 and SOM3 are 133.53, 95.72 and 
46.62, respectively. The graphical representation of the Eq 
value performed by the three models is shown in Fig. 10. 

a)  

b)  

c)  
Fig. 10. Quantization error achieved during the assessment of the known HLT, 
BD and ECC conditions, and the unknown DEM condition. (a) SOM1 response. 
(b) SOM2 response. (c) SOM3 response. 

The unknown pattern corresponds in this case to a 
demagnetization condition (DEM). Afterwards, the data 
modeling of such novel condition detected is carried out by 
means of a fourth model, SOM4, which exhibited during the 
training process an averaged quantization error of 7.27. After 
updating the knowledge of the novelty detection structure, 
SOM1, SOM2, SOM3 and SOM4 are subjected to the proposed 
dimensionality reduction procedure through the LDA 
projection. The resulting 2-dimensional LDA projection that 
represent the novelty detection structure is shown in Fig. 11, 
where four different clusters appear completely separated one 
from each other. 

In Table II, the resulting ratios obtained for the diagnosis and 
novelty detection are summarized. It should be highlighted that 
all evaluated samples have been correctly diagnosed and 
identified to its corresponding class with membership 
probability higher than 96% in all cases. 

 
Fig. 11. 2-dimensional LDA projection over the four available SOM grids, that 
is, SOM1, SOM2, SOM3 and SOM4. 

TABLE II 
RESULTING DIAGNOSTIC AND NOVELTY DETECTION MEMBERSHIP RATIOS 
Test 
case 

Test set 
Known class (%) Unknown class (%) 

1 HLT (100%) BD (100%) 

2 HLT (100%), BD (100%) DEM (>96%) 

3 HLT (100%), BD (100%), DEM (100%) ECC (>96%) 

 
The obtained results shown the effectiveness of the proposed 

data-driven monitoring method for detection, identification and 
learning of multiple faulty conditions in an electromechanical 
system. Aiming to emphasize and demonstrate the effectiveness 
of proposed dimensionality reduction through LDA projection, 
an additional test case is presented. Fig. 12 shows the resulting 
2-dimensional PCA projection of HLT, BD, ECC and DEM 
conditions, where a significant overlapping between the DEM 
and ECC classes takes place. In this sense, it should be 
mentioned that, in addition to the novelty detection performed 
by the proposed SOM models structure, their projection by 
means of LDA leads to avoid overlapping problems that may 
produce misclassifications. It must be noticed that this 
projection can be carried out iteratively trough the learning 
stages due to the neuron grids resulting from the self-organizing 
map, since each model act as a representative set of neurons in 
regard with the original data distribution. Thus, providing 
superior data processing capabilities compared with classical 
SVM based solution as shown in Fig 13, where classes 
overlapping problem reduce novelty detection performance till 
12% dealing with the characterization of multiple patterns. 
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Fig. 12. 2-dimensional PCA projection performed over all considered classes, 
that is, HLT, BD, ECC and DEM. 

Furthermore, although the proposed multi fault identification 
scheme manages as many sub-models as identified faults, each 
sub-model is focused on the characterization of a specific 
pattern of operation leading to a high capability of response for 
detecting novel conditions. Such capability of response can be 
quantified in terms of the computational burden, thus, over an 
Intel Core i7-4770K @3.50GHz CPU, the execution of the 
proposed algorithm in Matlab 2019a takes less than 200 msec 
in all considered conditions. In this regard, the inertia of most 
of the electromechanical faults takes several orders above such 
value. It should be also mentioned that the initial training, as 
well as the incremental learning procedures, have been 
analyzed in terms of required time resulting in less than 1 
second for all considered conditions. Therefore, it can be stated 
that the proposed diagnosis methodology can be implemented 
as a diagnostic tool for real-time operation. 

 
Fig. 13. Decision regions and projected boundaries of considered conditions by 
means of a 2-dimensional PCA projection and SVM-based novelty detection 
scheme. 

V. CONCLUSIONS 
Modern industrial production is characterized by the 

consideration of machine learning data based models to support 
the main aspects of the manufacturing process. In this regard, 
two main data science challenges related with condition 
monitoring of electromechanical assets in the industry 4.0 
framework are: (i) the premise that only information of the 
healthy condition is initially available and, (ii) the adaptation of 
the fault detection and identification scheme in order 
incorporate new operating conditions. Thus, this paper proposes 
a new methodology for multi-fault detection and identification 
based on incremental learning applied to novel faults detection 
on electromechanical systems by analyzing vibrations and 
stator current signatures of the electric motor drive.  

The new method has four key features: (i) It considers 
collaborative self-organizing maps as adaptive data patterns 

characterization; the SOM-based approach allows class 
topology modeling by means of a reduced set of neurons 
starting from the healthy operation of the electromechanical 
system. (ii) It uses a novelty detection structure based on 
quantization error, which successfully detected all novel 
scenarios considered. (iii) The LDA based learning procedure 
enables novel scenarios to be incorporated into the models to 
upgrade the knowledge available without need of original 
information and enhancing classification performance. (iv) The 
same SOM-LDA structure is used for detection and 
identification, that is, novelty assessment and classification of 
the measurement under analysis. 

Twelve different experimental scenarios have been 
considered including faults and operating conditions, 
representing a significant set of situations. Under each of these 
conditions, the proposed methodology provides satisfactory 
diagnosis results. The novelty detection is carried out in the 
original feature space, that is, the 50-dimensional space, by 
means the assessment of the resulting quantization error, Eq, for 
each measurement under inspection. This is due to the 
challenge that the novelty detection framework must address. 
When dealing with unknown fault conditions, it is critical to use 
multiple feature analysis approaches, as proposed with the 
novelty detection model structure, since the lower the number 
of features considered, the higher the risk of misidentification. 

A dimensionality reduction procedure is later applied by 
means of the LDA. Thus, by using the LDA, a better separation 
of the considered conditions is achieved, moreover, such 2-
dimensional reduction allows the implementation of visual 
procedures for better interpretations. Indeed, the user 
supervision is necessary after a novel scenario detection in 
order to confirm and track the corresponding root-cause. Thus, 
the proposed methodology is constrained to two-dimensional 
representations, where the underlying physical phenomena of 
the electromechanical system can be visualized. However, the 
incremental learning capabilities of the proposed method avoid 
model retraining and data storage. It must be noted that the 
proposed methodology shows a diagnostic accuracy of 100%, 
and 99% in novelty detection accuracy, which, compared to 
classical approaches based on SVM, represent high-
performance ratios. It must be clarified that the detection of 
unknown operating conditions is not limited to single faulty 
modes, since the occurrence of multiple or combined faulty 
modes would lead to novel patterns that would be detected, 
modeled and incorporated to the knowledge of the monitoring 
system for posterior identification. 

Indeed, from an industrial viewpoint, the development of the 
proposed multi fault identification structure may be extended 
aiming to be applied as a diagnostic tool for real-time 
operations. The model complexity is low in terms of 
computational burden, since considering a regular on-line 
iteration, just a change of basis must be applied over the 
measurement under analysis using the LDA projection matrix, 
together with Euclidian distance calculations between the 
projected measurement and the neurons of each available SOM 
neuron grid for membership assessment. Certainly, the 
proposed structure is suitable for being implemented in 
embedded systems such as field-programmable gate arrays 
(FPGA). 
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Finally, it should be noticed that the proposed diagnosis 

scheme, including SOM under an incremental learning 
framework supported by LDA projection has not been 
previously studied in multi-fault diagnosis and the obtained 
results reveal a its suitability for other rotating mechanical 
component faults and operating conditions since the proposed 
method has the capability to adapt to different sets of available 
physical magnitudes. 
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