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Abstract—Anomaly detection in manufacturing processes is 
one of the main concerns in the new era of the Industry 4.0 
framework.  The detection of uncharacterized events represents 
a major challenge within the operation monitoring of electrical 
rotatory machinery.  In this regard, although several machine 
learning techniques have been classically considered, the recent 
appearance of deep-learning approaches represents an 
opportunity in the field to increase the anomaly detection 
capabilities in front of complex electromechanical systems. 
However, each anomaly detection technique considers its own 
data interpretability and modelling strategy, which should be 
analyzed in front of the specificities of the data generated in an 
industrial environment and, specifically, by an 
electromechanical actuator. Thus, in this study, a comparison 
framework is considered including multiple fault scenarios in 
order to analyze the performance of four representative 
anomaly detection techniques, that is, one-class support vector 
machine, k-nearest neighbor, Gaussian mixture model and, 
finally, deep-autoencoder. The experimental results suggest that 
the use of the deep-autoencoder in the task of detecting 
anomalies of operation in electromechanical systems has a 
higher performance compared to the state of the art methods. 

Keywords—anomaly detection, electromechanical systems, 
deep-autoencoder, deep-learning. 

I. INTRODUCTION 
In recent years, the industrial sector has evolved to allow 

more sophisticated production processes with the aim of 
increase operational efficiency. Such smart manufacturing 
environment is constituted by a high interaction between 
production systems (i.e. operational technology), and 
computational systems and communications (i.e. information 
technology), leading to the so called Industry 4.0 [1]. Among 
all industrial departments, the maintenance’s area represents 
one of the most important investments to increase multiple key 
performance indicators (e.g. overall equipment effectiveness). 
In this regard, the implementation of predictive maintenance 
schemes is a desired strategy to act based on factual 
information rather than preventative recommendations. 
However, considering complexity and dynamic operating 
conditions of electrical rotatory based machinery and 
processes, current predictive maintenance schemes must 
accomplish with two main features. First, the capability of 
multiple patterns characterization resulting from such 
variability of the system's operation (i.e. torque, speed and 
fault conditions).  

Second, the capability of anomalies detection referred as 
unknown conditions of the asset in order to allow an effective 
application avoiding false positives or even false negatives 
outcomes. 

Indeed, in the last decade, with the fast-growth of methods 
based on Artificial Intelligence (AI), numerous data-based 
models have emerged. These algorithms have the ability to 
identify and learn complex relationships from the data in 
regard with the considered conditions. The Artificial Neural 
Networks (ANNs), are one of the most significant examples 
of these models. Furthermore, advances in hardware, 
especially in graphics processing units, have driven the 
development of depth ANN-based models. In this regard, 
Deep Learning (DL) techniques based on the ANN principles 
have enhanced the possibilities of complex data patterns 
management, characterization and posterior recognition in 
multiples disciplines [2-4]. 

Thus, the impact and advances over the use of DL in other 
fields of research are influencing the proposals to face current 
industrial challenges, specifically related with the industrial 
maintenance, leading to numerous studies for the diagnosis of 
faults in rotating systems [5-7]. However, most of these fault 
detection and identification schemes are carried out under the 
assumption of having enough representative data in regard 
with the healthy condition and the set of eventual faults 
conditions that will appear in the machine under monitoring. 
This assumption does not hold in a real industrial 
environment, where only the availability of data 
corresponding to the healthy condition can be assured. Thus, 
in order to allow the detection of operating conditions 
different from those considered as a reference or even 
different from those characterized as faults, the so called 
novelty detection or anomaly detection concept is being 
introduced. 

In this regard, there are multiple studies around the 
detection of novelties applied to rotating electrical machinery, 
especially based on machine learning (ML) models. For 
example, in [8] a novelty detection and fault diagnosis scheme 
is carried out on an electromechanical system. In [9], different 
ML algorithms focused on the detection of anomalies are 
evaluated. These works, although they represent a significant 
advance in the area of anomaly detection, do not include the 
evolution towards DL technology.  
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In addition, many researches, such as [10], point out that using 
assembly strategies of different ML-based models represents 
one of the best options to increase performance when 
considering multiple operating and failure conditions. 

In this sense, with the emergence of DL, the opportunity 
appears to explore new approaches where different 
independent models are not considered, but rather that the 
characterization of all the patterns is carried out by the same 
model, which offers a potential to improve the capacity of 
characterization and prevent diagnostic errors. Some recent 
works are pointing in this direction, however, studies that 
consider different technologies and novelty detection 
techniques are still needed to discuss their performance, 
limitations and thus allow making the best decision during the 
design of detection and diagnostic systems applied to the 
industrial sector. 

Therefore, two main contributions are proposed in this 
study. First, a quantitative and qualitative comparison of the 
different anomaly detection approaches, including ML-based 
techniques such as k-nearest neighbors (kNN), one-class 
support vector machine, (OC-SVM) and Gaussian mixture 
model (GMM), but also a novel DL-based technique, deep-
autoencoder (DAE). Second, the proposal of a novelty 
detection methodology including the use of DAE considering 
numerical features extracted from different domains to allow 
an incremental learning approach by re-training the models. 
Thus, the DAE-based methodology is validated to start from 
data corresponding only to the healthy condition of the 
electromechanical system under monitoring. It should be 
noted that the experimental validation is based on a public 
scientific database, and different faults, severities and 
operating conditions have been considered. 

This paper is organized as follows: Section II describes the 
theoretical aspects of DAE as an anomalies detection model; 
Section III describes the proposed anomaly detection based 
PMS methodology; Section IV includes the experimental 
system description used for validation and presents the 
experimental results and discussion; finally, Section V 
includes conclusion remarks. 

II. DEEP-AUTOENCODER AS ANOMALY DETECTION MODEL 
Autoencoders (AEs) are a type of symmetrical neural 

networks designed to learn a low dimensional representation 
given the input data. They consist of two stages: encoder, 
which learns to map input data to a low dimensional 
representation, and decoder, which learns to map this low 
dimensional representation back to the reconstruction of input 
data. It is possible to build a Deep-Neural-Network (DNN) by 
stacking several AEs and performing a layer-by-layer training, 
through the method proposed by Hinton et al [11]. In this, each 
AE is trained to reduce the reconstruction error (RE) between 
the original input 𝑥𝑥 and reconstructed output produced by the 
decoder 𝑥𝑥� by measuring of a cost function. In general, the RE 
of a AE is commonly measured by mean square error (MSE). 
Average MSE of 𝑁𝑁 data samples can be written as follows: 

 MSE = 1
𝑁𝑁
‖𝑥𝑥𝑘𝑘 − �̈�𝑥𝑘𝑘‖2                           (1) 

where 𝑥𝑥𝑘𝑘  represents the original data input vector, and �̈�𝑥𝑘𝑘 
represents the reconstructed vector.  

A DNN structure based on stacked AE, as shown in Fig.1, 
has the ability to learn complex relationships from the data 
through a mapping of non-linear functions.  

In the encoding stage, the input data are continuously 
compressed by several hidden layers to a more compact 
representation. 

 𝐸𝐸1 =  𝑓𝑓(𝑊𝑊𝑒𝑒1𝑥𝑥𝑘𝑘 + 𝑏𝑏𝑒𝑒1)                              (2) 

 𝐸𝐸2 =  𝑓𝑓(𝑊𝑊𝑒𝑒2𝐸𝐸1 +  𝑏𝑏𝑒𝑒2)                              (3) 

⋮ 

 𝐸𝐸𝑛𝑛 =  𝑓𝑓(𝑊𝑊𝑒𝑒𝑛𝑛𝐸𝐸𝑛𝑛−1 + 𝑏𝑏𝑒𝑒𝑛𝑛)                              (4) 

where 𝐸𝐸𝑖𝑖  denotes the data vector mapped by each network 
layer and 𝐸𝐸𝑛𝑛 denotes the deepest hidden representation vector. 
𝑓𝑓 represents the non-linear activation function of each layer. 
𝑊𝑊𝑒𝑒𝑖𝑖  and 𝑏𝑏𝑒𝑒𝑖𝑖  are weight parameters and the corresponding 
biases of each encoding layer respectively. 

In the decoding stage, the deepest hidden representation 
obtained from the encoding process is gradually decoded by 
several network layers. In the last layer of network, the model 
outputs a reconstruction vector of the initial input. 

𝐷𝐷1 =  𝑓𝑓(𝑊𝑊𝑑𝑑1𝐸𝐸𝑛𝑛 +  𝑏𝑏𝑑𝑑1)                             (5) 

𝐷𝐷2 =  𝑓𝑓(𝑊𝑊𝑑𝑑2𝐷𝐷1 +  𝑏𝑏𝑑𝑑2)                             (6) 

⋮ 

�̈�𝑥𝑘𝑘 =  𝑓𝑓(𝑊𝑊𝑑𝑑𝑛𝑛𝐷𝐷𝑛𝑛−1 + 𝑏𝑏𝑑𝑑𝑛𝑛)                             (7) 

where 𝐷𝐷𝑗𝑗  represents the corresponding the decoding vector for 
each of the encoding stages. 𝑊𝑊𝑑𝑑𝑖𝑖  and 𝑏𝑏𝑑𝑑𝑖𝑖 , are weight 
parameters and the corresponding biases of each decoding 
layer respectively. �̈�𝑥𝑘𝑘 is the final output vector of the network, 
which is also the reconstruction vector of 𝑥𝑥𝑘𝑘. 

Input Encoder Decoder Reconstructed
input  

Fig. 1. Schematic structure of a deep-autoencoder. 

The mapping function learned by DAE is specific to the 
training data distribution. Therefore, a DAE-based model 
typically fails at reconstructing data which is significantly 
different from data it has seen during training. This property 
of learning a specific mapping of a data distribution is 
particularly useful for the anomaly detection task. Applying a 
DAE-based model for anomaly detection follows the general 
principle of first training normal behavior and then generating 
an anomaly score for a new data sample. The cost function of 
the MSE used for AEs training allows it to be enabled as an 
anomaly measure.  

In the field of fault detection in electromechanical 
systems, this ability to detect anomalies can be widely 
exploited. Especially when including new information to the 
initial model. Through network retraining, it can learn new 
patterns of new operating conditions and fault states, allowing 
an evolutionary diagnostic model. 
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III. METHODOLOGY 
In this anomaly detection based PMS methodology 

proposed, a reconstruction-based model, as shown in Fig. 2. 
The first step is to process the data acquired from the system 
under monitoring to characterize the normal operating 
condition. Then, from the processed data, the estimation of 
numerical features in different domains is followed in order to 
better characterize and highlight possible anomalies in the 
electromechanical operation. Considering previous works 
related with predictive maintenance applied to 
electromechanical systems, the statistical time-domain 
features are: mean, maximum value, RMS, square root mean, 
standard deviation, variance, RMS shape factor, square root 
mean shape factor, crest factor, latitude factor, impulse factor, 
skewness, kurtosis, and normalized fifth and sixth. 15 
statistical frequency-domain features are considered. In 
addition, 14 characteristic frequencies of faults are considered, 
characteristic frequencies of bearings and characteristic 
frequencies of gearbox [12-14]. In the case of features in the 
time-frequency domain, the decomposition of the signal is 
obtained through the Empirical mode decomposition (EMD) 
method. The first two IMF´s of the decomposition are selected 
to obtain their Fourier amplitude coefficients and calculate 14 
features of each one. Then, each of these features are 
concatenated to form a single feature vector that will serve to 
train the DAE with measurements of the normal operation of 
the machine. So, the input of the anomaly detection model is 
the information contained in the features, and the output is an 
anomaly score that determines how different is the new 
measurement analyzed compared to those that has been 
trained (the reference). Full details of how to build the SAE 
model can be found in [15]. Since the DAE tends to perform 
a poor reconstruction with data different from those used for 
its training, the reconstruction error of the input data is 
expected to be a score of anomaly detection. For the anomaly 
score, its set a simple threshold 𝛿𝛿95 at the 95𝑡𝑡ℎ percentile of 
𝑀𝑀𝑀𝑀𝐸𝐸(𝑥𝑥𝑘𝑘 , �̈�𝑥𝑘𝑘)  for every 𝑥𝑥 in the entire training set [16]. For 
any test data sample 𝑥𝑥𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇 in online, its classify it as novel if 

 MSE(𝑥𝑥𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇 , �̈�𝑥𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇) > 𝛿𝛿95                    (8) 

In contrast, the performance of three different classic 
methods for anomaly detection are analyzed. First, a distance-
based method: k-nearest neighbors. Second, a domain-based 
method: one-class support vector machine. And third, a 
probabilistic-based method: Gaussian mixture model. All the 
details regarding these techniques can be found in [9], [17]. 

Distance-based methods are based on the assumption that 
normal data have close neighbours in the positive training set. 
The Euclidean distance is used to measure the proximity of a 
point to its close neighbors and establishes a kNN score. The 
probabilistic approaches estimate a probability density 
function of the positive data. The model will then classify 
points that lie outside of the high density region as a novelty. 
Domain-based methods construct a boundary using only the 
positive dataset. Domain-based approaches work by finding 
the optimal separation boundary between two classes, which 
is called a hyperplane. When getting a hyperplane, the output 
of this stage is binary (i.e. known or unknown). 

In order to evaluate the anomaly detection performance of 
the DAE and the other techniques, it has been decided to use 
True Positive (𝑇𝑇𝑇𝑇) to represent the number of correctly 
classified positive samples, False Negative (𝐹𝐹𝑁𝑁) to represent 
the number of positive samples misclassified as negative, True 
Negative (𝑇𝑇𝑁𝑁) to represent correctly classified negative 
samples and False Positive (𝐹𝐹𝑇𝑇) to represent the number of 
negative samples misclassified as positive. The anomaly 
detection performance is evaluated considering the True 
Positive Rate (𝑇𝑇𝑇𝑇𝑇𝑇), True Negative Rate (𝑇𝑇𝑁𝑁𝑇𝑇) and the 
Balanced Accuracy: 

 True Positive Rate (𝑇𝑇𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

                     (9) 

 True Negative Rate (𝑇𝑇𝑁𝑁𝑇𝑇) = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇

                      (10) 

 Balanced Accuracy =  (𝑇𝑇𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑁𝑁𝑇𝑇)
2�                       (11) 

The 𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑇𝑇𝑁𝑁𝑇𝑇 are the scores correctly classified of the 
samples of the known classes and the samples of unknown 
classes, respectively.   
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Fig. 2. Framework of the anomaly detection methodology.
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IV. VALIDATION OF THE METHODOLOGY 
The database provided by the Case Western Reserve 

University [17], is used to validate the proposed methodology 
and carry out the comparison with other methods. It was 
collected using accelerometers mounted at the drive end of 
motor which consists of normal data and faulty data. The 
faulty data set was generated by single point fault in the ball 
(FB), the inner race (FI) and the outer race (FO). For each one 
of the faults, various fault severities are considered, 0.007, 
0.014 and 0.021 in, respectively. Also, the data were acquired 
at different operating conditions corresponding to various 
motor loads (0, 1, 2, and 3 hp). All data sets were collected 
with the sampling frequency of 12 kHz. 

Seven scenarios for test are considered to evaluate the 
capability of the methodology to detect anomaly scenarios and 
the response of the models to the incorporation of new classes 
to the initially available information. The distribution of the 
classes for each scenario is showed in Table I. The four classes 
are grouped in three sets: training set, known set and unknown 
set. Each of the scenarios correspond to a progressing stage of 
the proposed approach, from an initial knowledge of only the 
normal condition (NC) with the four operating conditions, to 
a scenario where data of three classes is known. Posteriorly, 
one fault state is added to the training stage in each 
progressing stage. The developed DAE is formed by an 
encoder with an input layer of 𝑥𝑥𝑘𝑘  =  63 neurons and 𝐿𝐿 = 3 
hidden layers of 𝐷𝐷1 = 50, 𝐷𝐷2 = 10, 𝐷𝐷3 = 2 neurons and a 
symmetric decoder. The hyperparameters of the DAE are set 
as following: L2-regularization = 5.0𝑒𝑒−5, sparsity 
regularization = 5.0𝑒𝑒−5 and sparsity proportion = 0.4. 

TABLE I.  EXPERIMENTAL SET FOR EACH TRAINING AND TESTING 
SCENARIO. 

Label Training Set 
Testing Set 

Known Set Unknown Set 
S1 NC NC FB, FI, FO 
S2 NC, FB NC, FB FI, FO 
S3 NC, FI NC, FI FB, FO 
S4 NC, FO NC, FO FB, FI 
S5 NC, FB, FI NC, FB, FI  FO 
S6 NC, FB, FO NC, FB, FO FI 
S7 NC, FI, FO NC, FI, FO FB 

 

The average MSE values obtained for the training stage of 
each of the scenarios are shown in Table II. Although the 
resulting range of MSE values differs for each scenario, the 
difference in these values does not imply a bad reconstruction 
of the model. In general, the MSE value obtained depends on 
the range of values of the input features. In this regard, Fig. 3 
shows an example of reconstruction of the model for different 
health conditions. In Fig. 3(a), a real and reconstructed signal 
corresponding to the ball fault is shown, in this case a MSE 
value of 4.97 and a corresponding error percentage of 5.02% 
are presented. On the other hand, in Fig. 3(b) a real and 
reconstructed signal corresponding to the inner fault is 
presented with an MSE value of 172.26 and an error 
percentage of 7.32%. As can be seen, both figures are 
correctly reconstructed, however the high value of MSE in the 
case of inner fault compared to that of ball fault, is given by 
the value range of the input data. In this sense, a threshold is 
established at the 95th percentile of 𝑀𝑀𝑀𝑀𝐸𝐸(𝑥𝑥𝑘𝑘 , �̈�𝑥𝑘𝑘) . Fig. 4 
illustrates a testing set distribution, in this the bars of the blue 
histogram represents the known data, while the orange bars 
are the data corresponding to unknown data or anomalies.  

TABLE II.  AVERAGE MSE CORRESPONDING TO EACH TRAINING 
SCENARIO. 

Label Training Set Average MSE  
S1 NC 0.35 
S2 NC, FB 12.73 
S3 NC, FI 202 
S4 NC, FO 404 
S5 NC, FB, FI 132 
S6 NC, FB, FO 167 
S7 NC, FI, FO 204 

 

(a)    

(b)        
Fig. 3. Real feature signal and reconstructed signal by DAE. (a) Ball Fault; 
(b) Inner Fault. 

 
Fig. 4. Distribution of known data (blue) and unknown data (orange) and 
the corresponding threshold at the 95th percentile. 

The orange distribution can be observed that can be correctly 
classified 94% of the samples as novel. While the known data 
is classified close to 95%. 

In order to verify the effectiveness of the anomaly 
detection methodology, its compared with several successful 
classical anomaly methods: k-Nearest Neighbors (kNN), One-
Class Support Vector Machine, (OC-SVM) and Gaussian 
Mixture Model (GMM). In the case of kNN, the algorithm was 
implemented by setting the number of neighbors nearest to 
k=3. For OC-SVM, the Radial Basis Function (RBF) kernel 
was used and is set to 0.08. While for GMM, the Gaussian 
number was established corresponding to the number of 
operating conditions considered. All the parameters were 
obtained through experimentation. The result of anomaly 
detection of the DAE and the methods used as a comparison 
is shown in Table III. In terms of TPR and TNR, the results 
show high variability.  
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On the one hand, it can be seen that kNN in general has a 
high performance in TPR but an undesirable performance in 
TNR. The opposite occurs with OC-SVM, in general it has a 
poor performance to generalize known cases, while the 
unknown data are detected correctly in some scenarios. On the 
other hand, GMM is the method with the greatest deviation. 
In this sense, DAE detection method presents a trade-off 
between the detection of known data and the deviations 
presented. Table IV shows the corresponding balanced 
accuracy. It can be noted that the DAE-based method is 
superior to the other methods. In this sense, DAE presents a 
higher performance in five of seven scenarios considered. 
kNN is superior in two, GMM in one and OC-SVM does not 
present a higher performance in any scenario. 

TABLE III.  COMPARISON OF PERFORMANCE OF ANOMALY DETECTION 

Label 
KNN OC-SVM GMM DAE 

TPR TNR TPR TNR TPR TNR TPR TNR 
S1 100 75.1 80.5 98.2 57.5 98.7 99.8 100 
S2 96.8 80.4 86.4 83.6 93.8 70.7 92.3 87.9 
S3 96.9 98.5 86.2 99.6 84.5 98.5 95.2 97.2 
S4 88.0 80.5 81.5 82.8 85.5 97.5 80.0 86.0 
S5 96.7 66.1 89.8 66.6 94.7 67.0 95.2 67.8 
S6 89.7 93.8 90.2 98.0 97.2 11.9 95.2 94.0 
S7 90.2 59.3 88.8 37.4 83.5 55.8 97.3 38.9 

TABLE IV.  BALANCED ACCURACY OF ANOMALY DETECTION 

Label 
Balanced Accuracy 

KN
N OC-SVM GMM DAE 

S1 87.5 89.4 78.1 99.9 
S2 88.6 85.0 82.2 90.1 
S3 97.7 92.9 91.5 96.2 
S4 84.3 82.1 91.3 83.0 
S5 80.9 78.2 80.8 81.5 
S6 91.8 90.1 54.6 94.6 
S7 74.8 63.1 69.7 69.6 

Average accuracy 86.5 82.97 78.3 87.8 
 

To better understand the functionality of each of the 
methods, the data is reduced to a 2-D space making is 
presented use of principal component analysis (PCA). PCA 
aims to find the linear projections that best capture the 
variability of the data and all the principal components are 
orthogonal to each other. After that, each of the methods used 
as an anomaly detection comparison is applied. Each of the   
2-D projections and their corresponding anomaly detection 
method are shown in Fig. 5. Thereby, the projected space of 
features corresponds to a cumulative variance upper than 
76%, which reflects a good concentration of the data to be 
qualitatively analysed. It should be noted that a good anomaly 
detection approach is expected to capture the high value of TP 
and TN, contrary a high value of FP and FN is undesirable. 

First, the detection of anomalies by the kNN model is 
presented in Fig. 5(a). In this, it can be seen that the boundary 
produced to determine the known data covers a large part of 
the feature space. Consequently, samples outside this 
boundary or threshold are considered anomalies. In this sense, 
the kNN method has a great capacity to capture the known data 
corresponding to the training stage, however, it produces a 
high number of FN, that is, incorrectly classified anomalous 
data. Second, the OC-SVM model is presented as an anomaly 
detector in Fig. 5(b).  

 
(a) 

  
(b) 

   
 (c) 

 
 (d)  

Fig. 5. Anomaly Evaluation of scenario S1 under different anomaly 
detection methods. (a) knn-method; (b) OC-SVM method; (c) Gmm-method; 
(d) DAE-method. 

Third, the GMM-based anomaly detection model is presented 
in Fig. 5(c). As it can be seen, the shape and number of 
Gaussians greatly limits capture about the known data. Which 
interpret into a low performance with respect to the TPR 
values. Finally, the anomaly detection capacity of the DAE-
based reconstruction model is presented.  
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This method is not based on delimiting a space of 
characteristics, but on establishing a membership of novelty 
based on the reconstruction error. Since the DAE learns a 
specific distribution from the training data, it will generally 
not be successful in reconstructing data that is significantly 
different from the data it has seen during training. To identify 
anomalies, the reconstruction error score is used as an 
anomaly score, marking samples with reconstruction errors 
above a threshold determined by the 95th percentile 
established. Fig. 5(d) shows the anomaly distribution by DAE 
obtained for the same projection obtained through PCA. The 
results of the projections shown correspond to scenario S1. 
However, the projections are representative of the application 
of each of the methods chosen to perform the anomaly 
detection comparison. 

V. CONCLUSION 
The proposed study presents the anomaly detection 

capabilities of a model based on Deep-Autoencoders applied 
to an electromechanical system compared to classical 
methods. The anomalies are interpreted as deviations from the 
healthy condition. In this work, the different bearing faults 
allow to validate the anomaly detection approach, where the 
healthy condition is trained first and fault cases are 
progressively added to the available knowledge. There are 
three main important aspects in this study. First, different 
study scenarios are presented to evaluate SAE's anomaly 
detection capabilities. Second, comparisons are carried out 
with different state-of-the-art techniques for anomaly 
detection. Third, each of them is evaluated in terms of 
detection of known cases and novel cases, which mean 
samples used during training and never-before-seen samples 
or unknown samples, respectively. 

It should be noted that the anomaly detection study faced 
in electromechanical systems involves various requirements 
and considerations. Such as different operating conditions, 
complexity within electromechanical systems, different fault 
states, and data representation. Therefore, the application of 
adaptive methods and with higher calculation capacity is 
required to face the different problems present in the diagnosis 
and detection schemes of industrial systems. In this sense, the 
reconstruction-based approach, that means, the DAE-based 
approach, its superior in terms of performance in five out of 
seven scenarios. In addition, it presented the best balance 
between TPR and TNR of all the methods considered for the 
comparison. Although the results obtained by deep-learning 
are promising, it must be taken into account that the field of 
diagnosis and detection of anomalies is rapidly evolving, so 
are far from solved problems. 

In future works, more advanced strategies will be studied, 
especially with the use of deep-learning tools, to improve 
anomaly detection schemes and make them more and more 
reliable. Taking into account the great challenges that emerge 
in smart manufacturing and in the industry 4.0 framework. 
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