98 research outputs found
NEW RECORDS OF AMPHIBIANS AND REPTILES FROM TLAXCALA, MÉXICO
Tlaxcala is the smallest state of Mexico. There are not much studies of his herpetofauna. Like results of our work in the field during 2002-2003, we have reported nine new records of amphibian and reptiles
Recommended from our members
Sceloporus jalapae
Number of Pages: 5Integrative BiologyGeological Science
Recommended from our members
Sceloporus edwardtaylori
Number of Pages: 4Integrative BiologyGeological Science
Climatic niche attributes and diversification in Anolis lizards
Aim
The aim of this study was to test the link between climatic niche dynamics and species diversification in Anolis on islands and on the mainland. We tested the hypotheses that lineages in warmer climates and with narrow climate niches diversified more than lineages in cold climates and with broad climate niches. We also tested the hypothesis that species-rich clades exhibit greater niche diversity than species-poor clades.
Location
Neotropics.
Methods
We collated occurrence records for 328 Anolis species to estimate niche breadth, niche position and occupied niche space (as a proxy for niche diversity). We compared niche breadth between insular and mainland Anolis species and among Anolis clades, controlling for the potential confounding effect of range size. Using two approaches (clade-based and QuaSSE) we explored the association between niche metrics and diversification rates in Anolis lizards.
Results
We found that Caribbean Anolis had a narrower niche breadth and niche space occupation compared to mainland anoles after controlling for range size differences. There was a significant association between niche traits (mean niche position and niche breadth) and diversification in anoles. Anole lineages with narrow niche breadths and that occupy warmer areas exhibited higher speciation rates than those with broader niche breadths and that occupy cold areas. Similarly, clades with higher total diversification exhibit more niche diversity than clades with lower total diversification.
Main conclusions
Climatic niche attributes play a role in anole diversification with some differences between mainland and insular anole lineages. Climatic niche differences between regions and clades likely are related to differences in niche evolutionary rates. This also suggests that climate plays a strong role in shaping species richness between and within mainland and islands
Limitations of Climatic Data for Inferring Species Boundaries: Insights from Speckled Rattlesnakes
Phenotypes, DNA, and measures of ecological differences are widely used in species delimitation. Although rarely defined in such studies, ecological divergence is almost always approximated using multivariate climatic data associated with sets of specimens (i.e., the "climatic niche"); the justification for this approach is that species-specific climatic envelopes act as surrogates for physiological tolerances. Using identical statistical procedures, we evaluated the usefulness and validity of the climate-as-proxy assumption by comparing performance of genetic (nDNA SNPs and mitochondrial DNA), phenotypic, and climatic data for objective species delimitation in the speckled rattlesnake (Crotalus mitchellii) complex. Ordination and clustering patterns were largely congruent among intrinsic (heritable) traits (nDNA, mtDNA, phenotype), and discordance is explained by biological processes (e.g., ontogeny, hybridization). In contrast, climatic data did not produce biologically meaningful clusters that were congruent with any intrinsic dataset, but rather corresponded to regional differences in atmospheric circulation and climate, indicating an absence of inherent taxonomic signal in these data. Surrogating climate for physiological tolerances adds artificial weight to evidence of species boundaries, as these data are irrelevant for that purpose. Based on the evidence from congruent clustering of intrinsic datasets, we recommend that three subspecies of C. mitchellii be recognized as species: C. angelensis, C. mitchellii, and C. Pyrrhus
Climatic and evolutionary factors shaping geographical gradients of species richness in Anolis lizards
Understanding the climatic and historical factors shaping species richness is a major goal of ecology and biogeography. Consensus on how climate affects species richness is still lacking, but four potential and non-exclusive explanations have emerged: water-energy, where diversity is determined by precipitation and/or temperature; seasonality, where diversity is determined by seasonal variation in climate; heterogeneity, where diversity is determined by spatial variability in climate; and historical climatic stability, where diversity is determined by changes in climate through evolutionary time. Climate–richness relationships are also mediated by historical processes such as phylogenetic niche conservatism and lineage diversification across regions. We evaluated the effect of climate on species richness gradients of Anolis lizards and tested the role of phylogenetic niche conservatism (PNC) and regional diversification (RD) in the origin and maintenance of climate-richness relationships. Climate had a strong non-stationary relationship with species richness with strong shared effects among several climate axes. Regional differences in climate–richness relationships suggest different assembly processes between regions. However, we did not find evidence for a role of evolutionary factors such as PNC or RD underlying these relationships. We suggest that evolutionary processes affecting climate-richness relationships in Anolis likely were obscured by high dispersal rates between regions
Climatic and evolutionary factors shaping geographical gradients of species richness in Anolis lizards
Understanding the climatic and historical factors shaping species richness is a major goal of ecology and biogeography. Consensus on how climate affects species richness is still lacking, but four potential and non-exclusive explanations have emerged: water-energy, where diversity is determined by precipitation and/or temperature; seasonality, where diversity is determined by seasonal variation in climate; heterogeneity, where diversity is determined by spatial variability in climate; and historical climatic stability, where diversity is determined by changes in climate through evolutionary time. Climate–richness relationships are also mediated by historical processes such as phylogenetic niche conservatism and lineage diversification across regions. We evaluated the effect of climate on species richness gradients of Anolis lizards and tested the role of phylogenetic niche conservatism (PNC) and regional diversification (RD) in the origin and maintenance of climate-richness relationships. Climate had a strong non-stationary relationship with species richness with strong shared effects among several climate axes. Regional differences in climate–richness relationships suggest different assembly processes between regions. However, we did not find evidence for a role of evolutionary factors such as PNC or RD underlying these relationships. We suggest that evolutionary processes affecting climate-richness relationships in Anolis likely were obscured by high dispersal rates between regions
Evidence for divergent patterns of local selection driving venom variation in Mojave Rattlesnakes (\u3ci\u3eCrotalus scutulatus\u3c/i\u3e)
Snake venoms represent an enriched system for investigating the evolutionary processes that lead to complex and dynamic trophic adaptations. It has long been hypothesized that natural selection may drive geographic variation in venom composition, yet previous studies have lacked the population genetic context to examine these patterns. We leverage range-wide sampling of Mojave Rattlesnakes (Crotalus scutulatus) and use a combination of venom, morphological, phylogenetic, population genetic, and environmental data to characterize the striking dichotomy of neurotoxic (Type A) and hemorrhagic (Type B) venoms throughout the range of this species. We find that three of the four previously identified major lineages within C. scutulatus possess a combination of Type A, Type B, and a ‘mixed’ Type A + B venom phenotypes, and that fixation of the two main venom phenotypes occurs on a more fine geographic scale than previously appreciated. We also find that Type A + B individuals occur in regions of inferred introgression, and that this mixed phenotype is comparatively rare. Our results support strong directional local selection leading to fixation of alternative venom phenotypes on a fine geographic scale, and are inconsistent with balancing selection to maintain both phenotypes within a single population. Our comparisons to biotic and abiotic factors further indicate that venom phenotype correlates with fang morphology and climatic variables. We hypothesize that links to fang morphology may be indicative of co-evolution of venom and other trophic adaptations, and that climatic variables may be linked to prey distributions and/or physiology, which in turn impose selection pressures on snake venoms
The Effects of Governmental Protected Areas and Social Initiatives for Land Protection on the Conservation of Mexican Amphibians
Traditionally, biodiversity conservation gap analyses have been focused on governmental protected areas (PAs). However, an increasing number of social initiatives in conservation (SICs) are promoting a new perspective for analysis. SICs include all of the efforts that society implements to conserve biodiversity, such as land protection, from private reserves to community zoning plans some of which have generated community-protected areas. This is the first attempt to analyze the status of conservation in Latin America when some of these social initiatives are included. The analyses were focused on amphibians because they are one of the most threatened groups worldwide. Mexico is not an exception, where more than 60% of its amphibians are endemic. We used a niche model approach to map the potential and real geographical distribution (extracting the transformed areas) of the endemic amphibians. Based on remnant distribution, all the species have suffered some degree of loss, but 36 species have lost more than 50% of their potential distribution. For 50 micro-endemic species we could not model their potential distribution range due to the small number of records per species, therefore the analyses were performed using these records directly. We then evaluated the efficiency of the existing set of governmental protected areas and established the contribution of social initiatives (private and community) for land protection for amphibian conservation. We found that most of the species have some proportion of their potential ecological niche distribution protected, but 20% are not protected at all within governmental PAs. 73% of endemic and 26% of micro-endemic amphibians are represented within SICs. However, 30 micro-endemic species are not represented within either governmental PAs or SICs. This study shows how the role of land conservation through social initiatives is therefore becoming a crucial element for an important number of species not protected by governmental PAs
- …