30 research outputs found

    Follow up of GW170817 and its electromagnetic counterpart by Australian-led observing programmes

    Get PDF
    The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor

    Can we quickly flag Ultra-long Gamma-Ray Bursts?

    No full text
    International audienceUltra-long gamma-ray bursts are a class of high-energy transients lasting several hours. Their exact nature is still elusive, and several models have been proposed to explain them. Because of the limited coverage of wide-field gamma-ray detectors, the study of their prompt phase with sensitive narrow-field X-ray instruments could help in understanding the origin of ultra-long GRBs. However, the observers face a true problem in rapidly activating follow-up observations, due to the challenging identification of an ultra-long GRB before the end of the prompt phase. We present here a comparison of the prompt properties available after a few tens of minutes of a sample of ultra-long GRBs and normal long GRBs, looking for prior indicators of the long duration. We find that there is no such clear prior indicator of the duration of the burst. We also found that statistically, a burst lasting at least 10 and 20 minutes has respectively |28 per cent28{{\ \rm per\ cent}}| and |50 per cent50{{\ \rm per\ cent}}| probability to be an ultralong event. These findings point towards a common central engine for normal long and ultra-long GRBs, with the collapsar model privileged

    GRANDMA observations of advanced LIGO’s and advanced Virgo’s third observational campaign

    No full text
    International audienceGRANDMA (Global Rapid Advanced Network Devoted to the Multi-messenger Addicts) is a network of 25 telescopes of different sizes, including both photometric and spectroscopic facilities. The network aims to coordinate follow-up observations of gravitational-wave (GW) candidate alerts, especially those with large localization uncertainties, to reduce the delay between the initial detection and the optical confirmation. In this paper, we detail GRANDMA’s observational performance during Advanced LIGO/Advanced Virgo Observing Run 3 (O3), focusing on the second part of O3; this includes summary statistics pertaining to coverage and possible astrophysical origin of the candidates. To do so, we quantify our observation efficiency in terms of delay between GW candidate trigger time, observations, and the total coverage. Using an optimized and robust coordination system, GRANDMA followed-up about 90 per cent of the GW candidate alerts, that is 49 out of 56 candidates. This led to coverage of over 9000 deg^2 during O3. The delay between the GW candidate trigger and the first observation was below 1.5 h for 50 per cent of the alerts. We did not detect any electromagnetic counterparts to the GW candidates during O3, likely due to the very large localization areas (on average thousands of degrees squares) and relatively large distance of the candidates (above 200 Mpc for 60 per cent of binary neutron star, BNS candidates). We derive constraints on potential kilonova properties for two potential BNS coalescences (GW190425 and S200213t), assuming that the events’ locations were imaged

    Grandma: a network to coordinate them all

    No full text
    International audienceGRANDMA is an international project that coordinates telescope observations of transient sources with large localization uncertainties. Such sources include gravitational wave events, gamma-ray bursts and neutrino events. GRANDMA currently coordinates 25 telescopes (70 scientists), with the aim of optimizing the imaging strategy to maximize the probability of identifying an optical counterpart of a transient source. This paper describes the motivation for the project, organizational structure, methodology and initial results

    GRANDMA Observations of ZTF/Fink Transients during Summer 2021

    No full text
    We present our follow-up observations with GRANDMA of transient sources revealed by the Zwicky Transient Facility (ZTF). Over a period of six months, all ZTF triggers were examined in real time by a dedicated science module implemented in the Fink broker, which will be used for the data processing of the Vera C. Rubin Observatory. In this article, we present three selection methods to identify kilonova candidates. Out of more than 35 million candidates, a hundred sources have passed our selection criteria. Six were then followed-up by GRANDMA (by both professional and amateur astronomers). The majority were finally classified either as asteroids or as supernovae events. We mobilized 37 telescopes, bringing together a large sample of images, taken under various conditions and quality. To complement the orphan kilonova candidates (those without associated gamma-ray bursts, which were all), we included three additional supernovae alerts to conduct further observations of during summer 2021. We demonstrate the importance of the amateur astronomer community that contributed images for scientific analyzes of new sources discovered in a magnitude range r'=17-19 mag. We based our rapid kilonova classification on the decay rate of the optical source that should exceed 0.3 mag/day. GRANDMA's follow-up determined the fading rate within 1.5+/-1.2 days post-discovery, without waiting for further observations from ZTF. No confirmed kilonovae were discovered during our observing campaign. This work will be continued in the coming months in the view of preparing for kilonova searches in the next gravitational-wave observing run O4

    GRANDMA Observations of ZTF/Fink Transients during Summer 2021

    Get PDF
    We present our follow-up observations with GRANDMA of transient sources revealed by the Zwicky Transient Facility (ZTF). Over a period of six months, all ZTF triggers were examined in real time by a dedicated science module implemented in the Fink broker, which will be used for the data processing of the Vera C. Rubin Observatory. In this article, we present three selection methods to identify kilonova candidates. Out of more than 35 million candidates, a hundred sources have passed our selection criteria. Six were then followed-up by GRANDMA (by both professional and amateur astronomers). The majority were finally classified either as asteroids or as supernovae events. We mobilized 37 telescopes, bringing together a large sample of images, taken under various conditions and quality. To complement the orphan kilonova candidates (those without associated gamma-ray bursts, which were all), we included three additional supernovae alerts to conduct further observations of during summer 2021. We demonstrate the importance of the amateur astronomer community that contributed images for scientific analyzes of new sources discovered in a magnitude range r'=17-19 mag. We based our rapid kilonova classification on the decay rate of the optical source that should exceed 0.3 mag/day. GRANDMA's follow-up determined the fading rate within 1.5+/-1.2 days post-discovery, without waiting for further observations from ZTF. No confirmed kilonovae were discovered during our observing campaign. This work will be continued in the coming months in the view of preparing for kilonova searches in the next gravitational-wave observing run O4

    GRANDMA Observations of ZTF/Fink Transients during Summer 2021

    No full text
    We present our follow-up observations with GRANDMA of transient sources revealed by the Zwicky Transient Facility (ZTF). Over a period of six months, all ZTF triggers were examined in real time by a dedicated science module implemented in the Fink broker, which will be used for the data processing of the Vera C. Rubin Observatory. In this article, we present three selection methods to identify kilonova candidates. Out of more than 35 million candidates, a hundred sources have passed our selection criteria. Six were then followed-up by GRANDMA (by both professional and amateur astronomers). The majority were finally classified either as asteroids or as supernovae events. We mobilized 37 telescopes, bringing together a large sample of images, taken under various conditions and quality. To complement the orphan kilonova candidates (those without associated gamma-ray bursts, which were all), we included three additional supernovae alerts to conduct further observations of during summer 2021. We demonstrate the importance of the amateur astronomer community that contributed images for scientific analyzes of new sources discovered in a magnitude range r'=17-19 mag. We based our rapid kilonova classification on the decay rate of the optical source that should exceed 0.3 mag/day. GRANDMA's follow-up determined the fading rate within 1.5+/-1.2 days post-discovery, without waiting for further observations from ZTF. No confirmed kilonovae were discovered during our observing campaign. This work will be continued in the coming months in the view of preparing for kilonova searches in the next gravitational-wave observing run O4
    corecore