57 research outputs found

    Frontshear and backshear instabilities of the mean longshore current

    Get PDF
    An analytical model based on Bowen and Holman [1989] is used to prove the existence of instabilities due to the presence of a second extremum of the background vorticity at the front side of the longshore current. The growth rate of the so-called frontshear waves depends primarily upon the frontshear but also upon the backshear and the maximum and the width of the current. Depending on the values of these parameters, either the frontshear or the backshear instabilities may dominate. Both types of waves have a cross-shore extension of the order of the width of the current, but the frontshear modes are localized closer to the coast than are the backshear modes. Moreover, under certain conditions both unstable waves have similar growth rates with close wave numbers and angular frequencies, leading to the possibility of having modulated shear waves in the alongshore direction. Numerical analysis performed on realistic current profiles confirm the behavior anticipated by the analytical model. The theory has been applied to a current profile fitted to data measured during the 1980 Nearshore Sediment Transport Studies experiment at Leadbetter Beach that has an extremum of background vorticity at the front side of the current. In this case and in agreement with field observations, the model predicts instability, whereas the theory based only on backshear instability fai led to do so

    Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L05601, doi:10.1029/2005GL025514.The strong tidal modulation of infragravity (200 to 20 s period) waves observed on the southern California shelf is shown to be the result of nonlinear transfers of energy from these low-frequency long waves to higher-frequency motions. The energy loss occurs in the surfzone, and is stronger as waves propagate over the convex low-tide beach profile than over the concave high-tide profile, resulting in a tidal modulation of seaward-radiated infragravity energy. Although previous studies have attributed infragravity energy losses in the surfzone to bottom drag and turbulence, theoretical estimates using both observations and numerical simulations suggest nonlinear transfers dominate. The observed beach profiles and energy transfers are similar along several km of the southern California coast, providing a mechanism for the tidal modulation of infragravity waves observed in bottom-pressure and seismic records on the continental shelf and in the deep ocean.Support was provided by ONR and NSF

    Model-data comparisons of shear waves in the nearshore

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): C05019, doi:10.1029/2004JC002541.Observations of shear waves, alongshore propagating meanders of the mean alongshore current with periods of a few minutes and alongshore wavelengths of a few hundred meters, are compared with model predictions based on numerical solutions of the nonlinear shallow water equations. The model (after Özkan-Haller and Kirby (1999)) assumes alongshore homogeneity and temporally steady wave forcing and neglects wave-current interactions, eddy mixing, and spatial variation of the (nonlinear) bottom drag coefficient. Although the shapes of observed and modeled shear wave velocity spectra differ, and root-mean-square velocity fluctuations agree only to within a factor of about 3, aspects of the cross-shore structure of the observed (∼0.5–1.0 m above the seafloor) and modeled (vertically integrated) shear waves are qualitatively similar. Within the surf zone, where the mean alongshore current (V) is strong and shear waves are energetic, observed and modeled shear wave alongshore phase speeds agree and are close to both V and C lin (the phase speed of linearly unstable modes) consistent with previous results. Farther offshore, where V is weak and observed and modeled shear wave energy levels decay rapidly, modeled and observed C diverge from C lin and are close to the weak alongshore current V. The simulations suggest that the alongshore advection of eddies shed from the strong, sheared flow closer to shore may contribute to the offshore decrease in shear wave phase speeds. Similar to the observations, the modeled cross- and alongshore shear wave velocity fluctuations have approximately equal magnitude, and the modeled vorticity changes sign across the surf zone.This research was supported by the Office of Naval Research, the National Oceanographic Partnership Program, and the National Science Foundation

    Refraction and reflection of infragravity waves near submarine canyons

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C10009, doi:10.1029/2007JC004227.The propagation of infragravity waves (ocean surface waves with periods from 20 to 200 s) over complex inner shelf (water depths from about 3 to 50 m) bathymetry is investigated with field observations from the southern California coast. A wave-ray-path-based model is used to describe radiation from adjacent beaches, refraction over slopes (smooth changes in bathymetry), and partial reflection from submarine canyons (sharp changes in bathymetry). In both the field observations and the model simulations the importance of the canyons depends on the directional spectrum of the infragravity wave field radiating from the shoreline and on the distance from the canyons. Averaged over the wide range of conditions observed, a refraction-only model has reduced skill near the abrupt bathymetry, whereas a combined refraction and reflection model accurately describes the distribution of infragravity wave energy on the inner shelf, including the localized effects of steep-walled submarine canyons.Funding was provided by the Office of Naval Research and the National Science Foundation

    Field observations of shear waves in the surf zone

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C01031, doi:10.1029/2002JC001761.Alongshore propagating meanders of the mean alongshore current in the surf zone called shear waves have periods of a few minutes and wavelengths of a few hundred meters. Here shear wave properties are estimated with arrays of current meters deployed for 4 months within 300 m of the shoreline of a sandy beach. Shear wave velocity fluctuations are approximately horizontally isotropic, with root mean square values between 10 and 40% of the mean (3-hour-averaged) alongshore current V. Cross-shore variations of the time-averaged shear wave momentum flux are consistent with shear wave energy generation close to shore where the breaking wave-driven mean alongshore current V and current shear Vx are strong and with shear wave energy dissipation and transfer back to the mean flow farther offshore where V and Vx are weak. In case studies where V is a narrow jet near the shoreline the observed strong decay of shear wave energy levels seaward of the jet, and the cross-shore and alongshore structure of shear waves within the jet, are similar to predictions based on the linearly unstable modes of the observed V. Shear wave energy levels also are high in a marginally unstable case with a strong, but weakly sheared, V.This research was supported by the Office of Naval Research, the National Ocean Partnership Program and the National Science Foundation

    Modeling surf zone tracer plumes : 1. Waves, mean currents, and low-frequency eddies

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C11027, doi:10.1029/2011JC007210.A model that accurately simulates surf zone waves, mean currents, and low-frequency eddies is required to diagnose the mechanisms of surf zone tracer transport and dispersion. In this paper, a wave-resolving time-dependent Boussinesq model is compared with waves and currents observed during five surf zone dye release experiments. In a companion paper, Clark et al. (2011) compare a coupled tracer model to the dye plume observations. The Boussinesq model uses observed bathymetry and incident random, directionally spread waves. For all five releases, the model generally reproduces the observed cross-shore evolution of significant wave height, mean wave angle, bulk directional spread, mean alongshore current, and the frequency-dependent sea surface elevation spectra and directional moments. The largest errors are near the shoreline where the bathymetry is most uncertain. The model also reproduces the observed cross-shore structure of rotational velocities in the infragravity (0.004 < f < 0.03 Hz) and very low frequency (VLF) (0.001 < f < 0.004 Hz) bands, although the modeled VLF energy is 2–3 times too large. Similar to the observations, the dominant contributions to the modeled eddy-induced momentum flux are in the VLF band. These eddies are elliptical near the shoreline and circular in the mid surf zone. The model-data agreement for sea swell waves, low-frequency eddies, and mean currents suggests that the model is appropriate for simulating surf zone tracer transport and dispersion.This research was supported by SCCOOS, CA Coastal Conservancy, NOAA, NSF, ONR, and CA Sea Grant.2012-05-1

    Infragravity Energy and Its Implications in Nearshore Sediment Transport and Sandbar Dynamics

    No full text
    Source: https://erdc-library.erdc.dren.mil/jspui/This report presents a tutorial on infragravity motions in the nearshore zone with particular attention given to the influence of infragravity motions on sediment transport and runup. This ubiquitous low-frequency wave motion, with periods from 30 sec to several minutes, often contributes a substantial portion to the surf zone energy especially during storms when erosion and sediment transport are most acute. The historical development of infragravity wave models and research is discussed as well as infragravity wave dynamics and theoretical generation mechanisms. Field studies identifying infragravity motions are discussed, including the various methods used to measure this complex phenomenon. Considerations for future research including studies to monitor the nearshore morphology, incident wind waves and swell, and infragravity waves are also discussed. These studies would help to understand the link between infragravity energy and nearshore processes (e.g. , sediment transport, sandbar generation, beach cusps and other periodic morphologies, rip currents, and runup). An annotated bibliography is included as an appendix
    corecore