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Frontshear and backshear instabilities 
of the mean longshore current 

Asuncion Baquerizo,1 Miquel Caballeria,Z Miguel A. Losada,1 and Albert Falques3 

Abstract. An analytical model based on Bowen and Holman [1989] is used to prove the 
existence of instabilities due to the presence of a second extremum of the background 
vorticity at the front side of the longshore current. The growth rate of the so-called 
frontshear waves depends primarily upon the frontshear but also upon the backshear and 
the maximum and the width of the current. Depending on the values of these parameters, 
either the frontshear or the backshear instabilities may dominate. Both types of waves 
have a cross-shore extension of the order of the width of the current, but the frontshear 
modes are localized closer to the coast than are the backshear modes. Moreover, under 
certain conditions both unstable waves have simi lar growth rates with close wave numbers 
and angular frequencies, leading to the possibility of having modulated shear waves in the 
alongshore direction. Numerical analysis performed on realistic current profiles confirm 
the behavior anticipated by the analytical model. The theory has been applied to a current 
profile fitted to data measured during the 1980 Nearshore Sediment Transport Studies 
experiment at Leadbetter Beach that has an extremum of background vorticity at the front 
side of the current. In this case and in agreement with field observations, the model 
predicts instability, whereas the theory based only on backshear instability fai led to do so. 

1. Introduction 

In general, the wave-driven mean longshore current in the 
surf zone has a horizontal profile that increases seaward of the 
shoreline, reaches a maximum, and then decreases to a van­
ishing value beyond the breaking line. Thus the background 
vorticity (Vxf ''where Vx is the horizontal shear of the current 
and ' is the total mean depth) has at least one extremum 
seaward of the peak of the current. This is a necessary condi­
tion (Rayleigh condition) for the current to be unstable with 
respect to alongshore traveling perturbations so-called shear 
waves. Bowen and Holman [1989] (hereinafter referred to as 
BH) illustrated the mechanism of the shear instability by 
means of a simple velocity profile with only one local extre­
mum of the background vorticity on the seaward side of the 
current. In this case, the instability was clearly related to the 
extremum of the background vorticity at the back (seaward 
side of the current), and their model showed a good agreement 
with the field observations of Oltman-Shay ei al. [1989]. Fol­
lowing BH, most of the theoretical analysis on linear shear 
waves have considered current profiles with only one seaward 
extremum of the background vorticity and thus have been 
related to the backshear [see, e.g., Putrevu and Svendsen, 1992; 
Dodd and Thornton , 1990; Falques and Jranzo, 1994; Caballeria 
et a!., 1998]. Laboratory experiments by Reniers et al. [1997] 
have also shown good agreement between measured and pre-
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dieted wavenumbers and frequencies of shear waves on the 
basis of the backshear instability. 

Dodd et al. [1992], comparing stability properties at a flat 
and at a barred beach, observed that for the latter more than 
one unstable mode may arise. Since the background vorticity of 
the current in this case had more than one extremum, they 
associated one of them to the backshear and the other to the 
frontshear. They claimed that the mode associated to the 
frontshear over the bar was the fastest growing mode, while the 
second fastest one was the mode related to the backshear. 
They therefore concluded that for barred beaches the backs­
hear may not be so important. Also, some studies on nonlinear 
shear waves [see, e.g., Allen et al., 1996; Ozkan-Haller and 
Kirby, 1999] have considered profiles of the basic steady cur­
rent with two inflexion points, although the nonlinear analysis 
was based on the linearly dominant mode without caring about 
its origin. Those studies and the present paper suggest that 
under some circumstances the low-frequency modulation of 
the shear waves could be due to the interference of the front­
shear and the backshear modes. 

In this paper, the existence and the properties of two insta­
bility modes, one related to the extremum of the background 
vorticity seaward of the peak of the current (and to the back­
shear (BS) mode) and the other related to the extremum 
shoreward of the peak of the current (and to the frontshear 
(FS) mode) are investigated in detail. To this end a velocity 
profile with a maximum and two inflexion points at both sides 
of it is analyzed. The characteristics, wavelength, frequency, 
flow pattern, and conditions under which one or both modes 
are dominant are investigated. In order to deal with a simple 
analytical solution, following BH, an idealized current profile 
on a horizontal bottom is considered. Next, a similar ana lysis 
on realistic current and topography profiles, carried out by 
means of numerical simulation including bottom friction and 
turbulent momentum diffusion, confirms the validity of the 
idealized theoretical results. It is shown that under certain 
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conditions the frontshear is indeed dominant. Moreover, there 
are longshore current profiles that have frontshear and back­
shear waves of similar growth rates, making plausible the oc­
currence of a field modulated in the longitudinal direction . 
Finally, instability analysis of a velocity profile obtained from 
data measured at Leadbetter Beach [Thornton and Guza, 1986] 
that shows an inflexion point at the front side is performed. 
Results are compared with field data observations, showing 
good agreement with measured frequency-cyclic wave number 
spectra. 

The paper is organized as follows. The theoretical frame­
work is presented in section 2. The simple analytical model is 
developed in section 3. The numerical simulation for realistic 
conditions, including the comparison with Leadbetter Beach 
field data observations, is described in section 4. The conclu­
sions are given in section 5. 

2. Formulation 
The shallow water equations for momentum and mass con­

servation are considered as governing equations: 

(1) 

i = 1, 2, 

(2) 

The coordinate system is taken with the x 3 axis pointing ver­
tically upward. The free surface for still water corresponds to 
x 3 = 0. The x 2 axis is at the still water shoreline, and x 1 is 
oriented pointing offshore. The bottom profile is given by x 3 = 
-h(x 1 ), and the free surface elevation is given by x 3 = 7J( x 1 , 

x 2 , t). The total depth is C = h + 7J , p stands for the water 
density, t stands for time, and v stands for the depth-averaged 
horizontal velocity. The wind/swell wave forcing is given by,." 
and dissipation comes from bottom friction, '~"b• and turbulent 
lateral momentum diffusion ,. v · The wave term is calculated 
from the radiation stress tensor S ij as 

asij 
T ,; =- ax.• 

I 

i = 1, 2. 

The bottom shear stress is given by 

'~" b = -cdp(l u 0 + vl (u 0 + v)), 

(3) 

(4) 

where u0 is orbital velocity, cd is the drag coefficient for bottom 
friction, and brackets ( ) mean temporal average in the in­
coming short wave period. The turbulent lateral momentum 
diffusion is evaluated through 

i = 1, 2, (5) 

where v, is the kinematic eddy viscosity. 
The basic undisturbed state consists of a longshore current, 

Vt = 0 

and a setup/setdown of the free surface, 

7J = 1Jo(X I)' 

(6) 

(7) 

which are a steady solution of (1) and (2). An effective depth 
is defined by 

h.= h + 7J o, (8) 

and the cross-shore coordinate x is shifted with respect to x 1 in 
order to have x = 0 at the effective shoreline (hereinafter it 
will take the coordinates x, y = x 2). Then the free surface 
elevation measured from the basic undisturbed state 7Jo is 

g(x, y, t) = 1J (X, y, t) - 7Jo(x), (9) 

and the total depth is 

C = h + 7Jo + g = h. + g. (10) 

To perform linear stability analysis, a small perturbation is 
superimposed to the basic steady flow and the free surface 
elevation: 

VJ = U(X , y, t) = u(x)ei(ky-ot), 

Vz = V(x) + v(x, y, t) = V(x) + v(x)ei(ky-at), 

7J = 7Jo(x) + g(x, y, t) = 7Jo(x) + g(x)ei(ky-ar>, 

(11) 

(12) 

where the real number k takes account of the alongshore 
periodicity of wavelength As = 27T/k , the real part a, of a 
gives the angular frequency of the shear wave, and its imagi· 
nary part a ; gives the growth rate. The perturbation is periodic 
in time with period Ts = 27T/a, and propagates in the long· 
shore direction with celerity cr = a r!k. 

By using the weak-current approximation [Dodd, 1994], us· 
ing a small angle of incidence, and taking orbital velocity am· 
plitude 

(13) 

where -y is the breaking index, the bottom friction becomes 

(14) 

By inserting (12) into the governing equations (1) and (2) 
upon linearization and taking (5) and (14) into account the 
system of three ordinary differential equations is obtained: 

A 2-y g A 

ik (V- c)u = -ggx- cd - 7T - u 
h. 

Vxu + ik(V- c)v = -ikgg- cd 2_ 
7T 

V g ] ( "k A A vx 1:) + xx he + VIX l U + Vx + h , ~ , 

(15) 

(16) 

(17) 

Jj_ 
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Figure 1. Definition sketch of the extended Bowen and Hol­
man [1989] model. 

which is an eigenproblem for the eigenvalue c = a /k and the 
eigenfunction (u, v, g). Here any perturbation on the forcing 
due to the feedback from the instability into the incident wave 
field has been neglected. After discretization by spectral meth­
ods, the stability eigenproblem is solved by standard routines 
[Falques and Iranzo , 1994] to obtain the dispersion lines (k , 
u,) and the instability curves ( k, a;). 

3. Extended Bowen and Holman [1989] Model 
The existence of an instability due to an extremum of the 

background vorticity at the front side of the velocity profile and 
the way it coexists with the traditional backshear instability is 
investigated in this section. In order to have an analytical 
description a simple case based on BH is considered. An infi­
nitely long fiat-bottom beach of constant depth h = h 0 , 

bounded by a vertical wall at x = 0, and a piecewise longitu­
dinal current that consists of four regions are assumed (see 
Figure 1). In region 0, which extends from x = 0 to x = 81x 0 

(0 :S 81 < 1, x 0 > 0), the velocity is zero. In region I the 
current increases linearly from V = 0 at x = 81x0 to its 
maximum value V = V0 atx = 8;cX0 (8 1 < 82 < 1). In region 
II the velocity varies linearly from V0 at x = 8:cXo to V = 0 at 
r = x0 . Finally, the velocity current is zero in region III, which 
extends seaward of x = x 0 . 

The corresponding background vorticity is a discontinuous 
function that is zero in regions 0 and III, has a positive constant 
1alue V) h = frfh in region I, and has a negative constant 
1-alue V) h = fb !h in region II. Notice that for 81 = 0 the 
profile coincides with that analyzed by BH, with V) h having 
only one extremum in region II. For 81 > 0, there is an addi­
tional extremum of the background vorticity in region I. 

To seek an analytical solution, bottom friction and turbulent 
momentum diffusion are disregarded, and the rigid lid assump-

tion is adopted, i.e., dr,!dt is negligible in comparison to hor­
izontal fluxes. From this latter hypothesis and the mass con­
servation (17), a stream function representation of the flow 
follows: 

with 

hu(x , y , t ) = -\(rY 

hv(x, y, t) = \(rx 

(18) 

(19) 

Plugging (19) into (15) and (16) results in an expression for the 
free surface elevation 

1 
g(x) = - gh [(V- c) !Jix - Vx!JI] (20) 

and a governing equation 

[ 
2 o/AJ a ( Vx) (V-c) ljJ - kljl- - -hljl - - =0 

.u h ax h . (21) 

Introducing dimensionless variables x', y ' , f , u' , v', \(r' , 

and t ' such that 

x =xoX' , y =xa)l', g = h of, h . = hoh ~ . 

Xo 
u = V0u' , v = V0v', (22) t = Vo t', 

V= V 0V', c = V0c', \(r = xohoVo \(r', 

the simple topography and velocity profile of the model (21) 
reduces to 

(23) 

Henceforth the dimensionless variables will be noted without 
prime. 

The boundary conditions ljl(x = 0) = 0 and ljl(x = oo ) = 
0 are applied to (23) at the shoreline and far offshore. The 
solution to this boundary problem is 

Region 0 ljl0 = A 0 sinh (kx) 

Region I ljJ 1 =A 1 sinh (kx) + B 1 cosh (kx) 

Region II o/2 = A 2 sinh (kx ) + B 2 cosh (kx) 

Region III o/3 = A 3e -kx 

(24) 

To ensure the continuity of the stream function ljJ and of the 
sea surface elevation g, the following matching conditions at 
the interfaces are imposed: 

o/o(8,) = o/ 1(8 1), 

o/z(1) = o/3(1), 

g,(8z) = gz(8z), 

ljJ,(8z) = ljl z{ 8z), 

go(8,) = gl(8 1) , 

gz(l) = g3(1) . 

(25) 

Conditions (25) constitute a linear system for the unknown 
coefficientsA 0 , A 1 , B 1 , A 2 , B 2 , andA 3 . A nontrivial solution 
requires the corresponding matrix to be singular, i.e. , a certain 
condition on a. From (25) the following relations can be ob­
tained: 

(26) 
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81 fts~ 
AI U- /piC I, 

(27) 

[8 2 81] (k- u) - --
A2 A1 

+ (f,- ft) [ 2 (81 8 2) 2 818 2] 
S 2 + S2C2 A';'+ A

2 
+ C2 A';' A

2 
= 0, (28) 

8 2 u + en~of, 
A2 u + eocof,' 

(29) 

where 

s 1 =sinh (8 1k), c 1 =cosh (8 1k) , 

s 2 =sinh (82k), c 2 =cosh (82k) , (30) 

s 0 =sinh (k), c 0 =cosh (k), eo= e -k 

After straightforward algebra the characteristic equation for 
u follows from (26) to (29): 

(31) 

where a 2 , a 1, and a 0 are real functions of the dimensionless 
wavenumber k given by 

a 2 = b 0 + b 1 + b 2 + b 5 - b 3 - b4, 

a 1 = (b 1 + b s)(bz- b3) + b 1b s + bo(b z + b3 + b 6) 

- b4(b1 + b6)- bob 7, 

a0 = (b 2 - b 3)b1b 5 + bob 6(b z + b3)- b4b1b 6 - bob 7b 5, 

where 

b3 = -Cft- f,)czS 2, 

bs = f,soeo, 

b 2 = -k, 

(32) 

(33) 

For a given k, (31) is a cubic polynomial with real coeffi­
cients and has therefore three roots that can be either all real 
or one real and two complex conjugated, u = u,. ± i u;, where 
i is the imaginary unit and u,. > 0 and u; > 0. The basic 
current is stable for the first case. For the second case the 
current is unstable, and the positive imaginary part of the 
complex root, u;, is the growth rate of the shear wave. 

3.1. Analysis of the Frontshear and Backshear 
Instability Curves 

To explain the behavior of the complex solutions of (31), in 
Figure 2 their imaginary and real parts are presented. Figure 
2a shows the instability curves ( u; versus k) calculated with 
82 = 0.5 for different values of 8 1• As could be expected, for 
81 = 0 the solution coincides with the BH solution and shows 
an interval of wave numbers kb ,mn < k < kb ,mx (for the 
example kb ,mn = 1 .38 and kb ,mx = 3.42) for which the shear 
waves are unstable with a maximum growth rate u; ,b = 0.33 
achieved at kb = 2.5. 

For small values of 81 the solution shows two ranges of 
unstable wave numbers. One of the instability curves has al­
most the same shape a nd magnitude as the one obtained by 
BH, and since it responds to backshear changes, it will be 
referred to as the backshear instability curve. The additional 

0.75 

82 = 0.5 (a) Instability curves 

- s. =0 

0.50 

cri 

0.25 

0.00 

4.0 
82 = 0.5 (b) Dispersion relationships 

----- s. =0 

3.0 81 > 0 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 

k 
Figure 2. Complex solutions of the dispersion equation: (a) 
positive imaginary part of u and (b) real part of u calculated 
for 82 = 0.5 and different values of 8 1• 

range kf,mn < k < kf,mx of unstable wave numbers is clearly 
associated with the existence of the frontshear [1 since their 
growth rates increase with fJ. This curve is referred to as the 
frontshear instability curve. As an example, for 8 1 = 0.03 this 
interval is 0 < k < 1.27 and has a maximum growth rate of 
u;.J = 0.05, smaller than u;,~, at k1 = 1.06. For 8 1 = 0.06 
both curves intersect, showing two relative maxima; again, the 
one corresponding to the backshear remains almost un· 
changed. For 81 = 0.2 there is just one unstable curve with a 
fastest growth rate u; = 0.59 at k = 3.3, significantly greater 
than previous values of u; ,b; moreover, the range of unstable 
wave numbers is wider, extending from k,, = 0 to k,x = 

4. 92. Notice that k,, is asymptotically zero, which means that 
when a shear exists at the frontshear region, the range of 
wavelengths for which the shear waves are unstable is not 
bounded. 

In Figure 2b the values of u,. of the unstable modes are 
highlighted with a thicker curve line. Both the front and back 
shear instability curves have almost linear dispersion relation· 
ships with the same slope. 

Figure 3 shows the maximum growth rate u; in terms of /1 
for the values 82 = 0.2, 82 = 0.5, and 82 = 0.7, which represent 
three different backslopes. For each backslope f"( 82 ) there is 
a critical value of the fronts hear ff '( 82 ) (or equivalently, a 
critical value 8~ ' ( 82)) such that for [1 < f) ' the curve has two 
branches corresponding to the two relative maxima of the 
instability curves, one due to the frontshear and the other due 
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to the backshear. For !1 > fj' , since the (k , u;) curve has one 
maximum, there is just one branch. For !1 < fj ' the frontshear 
branch u;i/1) increases with !1 starting at u; = 0, whereas 
the backshear branch is nearly horizontal, revealing that the 
existence of the frontshear does not affect the backshear in­
stability. 

The behavior of the only branch existing for !1 > fj ' de-

pends, however, on the relative intensity of the frontshear and 
backshear. This branch starts at the level of the maximum of 
both growth rates at fj', which for steep ( 82 large) backslopes 
corresponds to the backshear fastest growing mode (see curves 
obtained for 82 = 0.5 and 0.7), whereas for mild ( 82 small) 
backslopes is achieved by the frontshear mode (see curve for 
82 = 0.2). 

1.0 -.------------------------, 

~- backs hear dominance 

frontshear dominance 
0.8 

0.6 

0.4 

ZoneD 

0.2 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 4. Division of the domain (82 , 8 1) into zones attending to frontshear or backshear wave dominance. 
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For r > f} 1 and steep (o2 large) backslopes there is a range 
of values for which the backshear instability is dominant since 
the growth rate is insensitive to the increase offr- This pattern 
is followed up to a second critical value f}'( o2 ) (or equiva-

lently, a critical value 0~ 2 ( 82)) for which the growth rate starts 
to increase with fr- Here f} ' establishes the transition from 
backshear to frontshear predominance for values of fr > f}' . 
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Figure 6. Snapshot of the flow structure, the stream function, and the free surface elevation of the (a) 
frontshear wave and (b) backshear wave obtained for P 1(o 2 = 0.8, 81 = 0.03). 
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Figure 7. Snapshot of the flow structure, the stream function, and the three-dimensional free surface 
elevation of the shear wave resulting from the superposition of the backshear and frontshear waves obtained 
for P 2 (o2 = 0.31, o1 = 0.038). 

backslopes the frontshear instability is dominant at the branch­
ing point.f?, having crossed at a critical value f} '(fb) < f}' the 
backshear branch. For fr > f}' the growth rate increases with 
increasing fr following the tendency of the frontshear branch 
obtained for values fr < f}'. 

Attending to this behavior, the domain of values (82, o1) may 
be divided into four zones that will be referred to as zone A, 
zone B, zone C, and zone D, delimited by the curves o 1 = 

o~'( o2 ) and o1 = o~'( 82 ) (see Figure 4). In zones A and B the 
instability curves have two relative maxima; the backshear is 
dominant in zone A, whereas the frontshear is dominant in 
zone B. In zones C and D there is only one relative maximum 
of the growth rate related to the backshear in zone C and to the 
frontshear in zone D. 

3.2. Characteristic Timescales and Space Scales 

Figure 5 shows, in terms of J1, the dimensionless velocity 
phase c (Figure Sa), the dimensionless wave number k (Figure 
5b ), and the dimensionless wave frequency normalized by the 
absolute value of the backshear, u)(27Tlfbl) (Figure 5c), and 
by the frontshear, ur1(27Tfr) (Figure 5d), obtained for 82 = 0.2, 
0.5, and 0.7. 

The BH estimate of the shear wave celerity, c = V0 /3, is still 
valid no matter whether the instability comes from the front­
shear or the backshear. There is an exception: the very long 

frontshear waves (zones A and B) may have phase speed~ 

significantly smaller increasing withf1 linearly up to c = V0/5. 
Moreover, in agreement with BH model the frequency of the 

backshear mode is proportional tofb, u rf (27Tlfbl ) = 0.07. On 
the other hand, the frequency of the frontshear mode tends to 
be proportional tof1, also with u ) (27Tf1) = 0.07, for 82 = 0.7 
and 82 = 0.5 ; for o2 = 0.2 a similar trend is observed but with 
smaller frequencies . Again , for the long frontshear wave~ 

(zones A and B) the frequency can be significantly smaller, 
u r1 (27Tf1) = 0.01. 

Finally, the wave number of the backshear mode follows the 
predictions of BH, k = 7T. The wave number of the frontsh ear 
wave increases with fr ranging from k = 7T to k = 2 7T in zone 
D and up to k = 2 in zones A and B. 

3.3. Spatial Structure of the Flow 

Once the wave frequency of an unstable shear wave with 
wave number k is obtained, fixing the value of A 0 , the coeffi. 
cientsA 1, B 1, A 2 , B 2 , andA 3 can be determined from (26~ 
(29). The water surface elevation will then be given by (20).1n 
the following, the spatial structure of the shear waves obtained 
for different pairs of (82 , 81) will be analyzed. Their values are 
represented in Figure 4 and denoted by P 1, P 2 , P 3 , and P4. 

Figure 6 shows a snapshot of the velocity field of (a) the 
front shear and (b) the backshear waves with relative faste~t 
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Figure 8. Snapshot of the flow structure, the stream function, and the free surface elevation of the (a) 
backshear wave obtained for P 3 (a2 = 0.8, a1 = 0.2) and (b) frontshear wave obtained for P4 (a 2 = 0.5, 
a1 = o.2). 

growth rates, calculated for a2 = 0.8 and a1 = 0.03 (denoted by 
?1), where the backshear is dominant (zone A). Underneath 
the arrows the isolines of the stream function have been drawn. 
Figure 6 also includes the corresponding free surface elevation 
as a function of x. The front shear wave, with a wavelength 
>.1 = 9.62, extends from the shoreline over the width of the 
current. The backshear wave, with a wavelength A.1 = 1.32, 
extends over a wider zone of about one and a half the width of 
the current, and the significant part of the flow due to the 
backshear is confined to the region 0. 5 s; x s; 1. 5. 

For mild (a2 small) backslopes there is a given front slope for 
which the frontshear and the backshear waves have approxi­
mately the same growth rate u;, leading to the possibility of 
having both instabilities at the same time, which are two prop­
agating waves that have close angular wave frequencies ur,r 
and ur,b = ur,r + !:1ur and close wave numbers k1 and kb = 
k1 + !:::..k. If the water surface elevation of the frontshear and 
the backshear waves are ~j(x, y, t) = m aj(x) exp [i(kfy -
~,})]} and ~b(x, y, t) = mab(x) exp [i(kb)' - ur,bt)]}, 
respectively, the resulting wave is then 

((x,y, t) = D\{[gjx) + gb(x)ei(!>ky - tw"l]ei(k_oo-u,.ttl}, (34) 

where ~(x, y, t) is a wave whose amplitude is modulated in the 
longitudinal direction with wavelength A. = 2 7r/ !:1k and travels 
in they direction with celerity c = !:1ur1!:1k (see Figure 7 
calculated for al = 0.038 and a2 = 0.31 (denoted by p 2 in 
Figure 4)). 

The case analyzed in zone C has the same backshear as the 
case in zone A, but the frontshear has a larger value. In both 
cases the backshear is dominant, and the wave field pattern is 
similar (see Figure Sa obtained for a1 = 0.2 and a2 = 0.8; P3 in 
Figure 4). Finally, in zoneD the frontshear wave has a smaller 
wavelength than the one obtained in zone A and extends over 
a wider zone. 

4. Numerical Analysis of Realistic Profiles 
The model presented above explains the basic mechanism of 

instabilities due to an extremum of the background vorticity at 
the front side of the velocity profile. For a more realistic 
description the analysis of smooth current profiles in a beach of 
variable depth has been done by solving (15), (16), and (17) 
numerically, which takes into account bottom friction and lat­
eral momentum diffusion [see Falques and Iranzo, 1994]. A 
series of current profiles with and without background vorticity 
extremum at the front over a plane sloping beach are analyzed. 
Then, instability analysis is performed on a current profile 
obtained from data measured at Leadbetter Beach, and results 
are compared with field observations. 

4.1. Instability Analysis on a Plane Sloping Beach 

A series of three longshore currents in a plane beach of 
slope 1:15, with the same profile seaward of the location of 
maximum velocity and varying frontshear values, is analyzed . 
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Figure 9. Curre nt profiles and velocity gradients of cases 0, 1, and 2. 

This moderate reflective profile was chosen expecting an in­
stab ility behavior comparable to the extended BH model. In a ll 
cases the shear extremum at the back is vx.h = - 0.044 s 1

• 

Case 0 corresponds to a profile without frontshear extremum, 
and cases 1 and 2 have a frontshear extremu m with values of 
vx,f = 0.085 s I and v,,f = 0.096 s 1

, respectively. Figure 
9 shows the three velocity profiles and their respective back­
ground vorticities together with the simplified curves for the 
analysis with the extended BH model. 

Figure 10 shows the instability curves obtained for the three 
cases by neglecti ng the damping effect of bottom friction and 
turbulent diffusion (Figure lOa) and with a drag coefficient 
C d = 0. 0001 and a kinematiC eddy ViSCOSity ( )J1 ) max = 0.01 m 2 

s- 1 (Figure 1 Ob ). For the same cases, Figures lla and llb 
show the corresponding dispersion relationships. 

Case 0 presents an instability diagram with a singl e (non­
spurious) mode with maximum growth rate ach ieved a t k = 
0.089 m 1

• Cases l and 2 present two unstable curves. The 
fastest growing mode of the first one is placed at k - 0 .078 
m - 1 for both cases, and the one of the second curve is placed 
atk = 0.1 56 m 1 for case 1 and atk = 0.201 m - 1 for case 
2. Similar curves are obtained with and without damping, and 
the only significant effect of the viscosity and bottom friction is 
to reduce the growth rates of all modes. 

The first modes of cases 1 and 2 resemble the single mode of 
case 0, and they are insensitive to the change of the frontshear 

value. Their celerities are c- 0.3 m s - 1 = 3Vmaxf4, where 
vmax is the maximum value of the current, and their wave 
numbers are in the range 27r/3 < kl < 27r/1.5, where l ~ 25 
m is the width of the current. All these values are in the ranges 
expected for a vorticity wave due to the extremum of the 
background vorticity at the backside of the profile. Moreover, 
the analysis of similar profiles, not presented here for simplic· 
ity, have shown that the growth rate increases with f". 

The second unstable curve exists only for the profiles with a 
shear at the front. They have similar wave numbers, k - 0.1 8 
m 1

, and their celerities are - c - 0.1 m s - 1
• The highest 

growing rate corresponds to the case of the largest front shear. 
These results suggest that the first modes of cases 1 and 2 are 

associated with the extremum of the background vorticity at 
the back, whereas the second modes are due to the one at the 
front. Because of the dependence of the background vortici~ 
on the beach profile, numerical results give a frontshear wave 
with a larger wave number than the backshear wave. By ap· 
plying the ana lytical model, for the case of two unstable curves. 
the front shear fastest growing mode has a smaller wave num· 
ber than the corresponding backshear wave. This behavior is 
due to the differences in shapes of the beach profiles used: a 
flat sloping bottom was tested for the numerical simulations 
and a constant water depth for the simplified model. Numer· 
ical simulations of the velocity currents of cases 1 and 2 with a 
constant water depth beach profile predicted, as expected. 
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Figure 10. Instability curves obtained for cases 0, 1, and 2. Figure 11. Dispersion relationship curves obtained for cases 
0, 1, and 2. 

instability and dispersion curves almost identical to the ones 
obtained with the analytical model. 

In order to compare cases 1 and 2 with the extended BH 
model, simplified current profiles with the same shears at the 
front and at the back sides were analyzed. The parameters used 
were V0 = 0.39 m s- \ x 0 = 17.28 m, o2 = 0.48, and o1 = 
0.22 for case 1 and o1 = 0.25 for case 2, whose corresponding 
nondimensional shears arefb = -1.92,!11 = 3.84, andf12 = 
4.34 (see Figure 9c). The extended BH model anticipates 
frontshear dominance in both cases with growing rates, uil = 
0.01 5 s- 1 and 0'; 2 = 0.017 s- 1 (see Figure lOc), which are 
about twice the values obtained with the numerical model. This 
may be due to the modelization of the shears in the simplified 
current profile, to the sloping sea bed, and to the free surface 
effects [Falques and Iranzo, 1994]. However, the values of the 
wave numbers (k 1 = 0.215 m- 1 and k 2 = 0.249 m- 1

) and 
celerities ( c 1 = 0.12 m s - I and c 2 = 0.14 m s - 1

) are in good 
agreement with the numerical results. 

Figure 12 shows the flow structure of (a) the backshear wave 
of case 0, (b) the backshear wave of case 1, and (c) the front 
shear wave of case 1. For the velocity profile without a shear 
extremum at the front the back vorticity wave extends from the 
shoreline in a zone of width approximately twice the width of 
the longitudinal current. 

The significant part of the front shear wave of case 1 is 
restricted to a narrow region of width l 1 ~ 9 m, delimited 
approximately by the shoreline and the line of the maximum 
current velocity, x = X 111 • Its celerity is roughly c ~ 0.5 V, 
where V ~ 0.15 m s- 1 is the average velocity in that region, 

suggesting that the frontshear wave is convected by the longi­
tudinal current between x = 0 and x = X 111 • The presence of 
the front shear reduces the flow field associated with the back­
shear wave between the shoreline and the location of maxi­
mum current velocity. 

4.2. Comparison With Field Data 

Theoretical results are compared with field data measured 
during the 1980 Nearshore Sediment Transport Studies exper­
iment at Leadbetter Beach, Santa Barbara, California. For the 
analysis the velocity profile fitted by Dodd et al. [1992] to data 
measured on February 4 (run c) with the model by Thornton 
and Guza [1986] was chosen as a base. This profile, hereinafter 
referred to as case LB 0 , has a single inflexion point located in 
the zone seaward of the location of maximum velocity, with a 
value of v x,b = -0.024 s- 1

• 

Run c is the third in a series of three runs measured in an ~4 

hour interval that were analyzed by Dodd et al. [1992] . To 
account for variations in tidal elevation and waves over that 
interval, they fitted three velocity profiles to longshore current 
measurements, obtaining very similar profiles. 

In order to compare the situation analyzed by Dodd et al. 
[1992] with results for a current profile with an additional shear 
at the front, a velocity current that conserves the shape of the 
profile of case LB 0 seaward of the location of maximum ve­
locity was adopted. In the shoreward part of the current a cubic 
spline was fitted to the bin-averaged data from the three con­
secutive runs. The resulting velocity profile, which will be re-
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Figure 12. Snapshot of the flow structure of (a) the backshear wave of case 0, (b) the backshear of case 1, 
and (c) the frontshear wave of case 1. 

ferred to as case LB 1 , has a value of the shear extremum at the 
front: Vx,f = 0.033 s- 1 (see Figure 13). 

For the instability analysis, in order to be consistent with the 
analysis performed by Dodd et al. [1992] , diffusion terms were 
neglected and the same law for the bottom shear stress was 
adopted. Different values of the bottom friction coefficient in 
the range 0 s c d s 0.009 were tested. Case LB 0 presents an 
unstable mode with a fastest growing mode at k = 0.055 m- 1 

for values up to cd = 0 .007 (Figure 14), a value smaller than 

that used by Dodd et al. (1992] for the calculation of the 
velocity profile, an inconsistency that was already pointed out 
by the authors. 

The instability frequency-cyclic wave number relationship 
(Figure 15) agrees with Dodd et al.'s (1992] predictions and 
falls in the same region as the variance computed from field 
observations. The instability curves obtained for case LB" 
with fastest growing modes located at k - 0 .065 m- 1

, a 
slightly higher value of k, have larger growth rates and almost 

0.60 -,--------------- -------. 

0.0 20.0 40.0 

x(m) 
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Figure 13. Velocity profiles of cases LB 0 and LB 1 and data measured at Leadbetter beach on February 4. 
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Figure 14. Unstable modes obtained for cases LB 0 and LB 1 for different values of cd. 

identical dispersion relationships than those obtained for case 
LB0• Moreover, the unstable modes exist for values of cd up to 
0.009, a value that is the same as that used by Dodd et al. [1992] 
for the calculation of the velocity profile. 

Figure 15 shows (a) thef- k values measured at Leadbet­
ter on February 4 and the values predicted for (b) case LB 0 

with cd = 0.004, (c) caseLB 1 withcd = 0.004, and (d) case 
LB1 with cd = 0.009. Predicted and measured values agree 
fa irly well. 

5. Conclusions 
An analytical study and a numerical model [see Falques and 

Iranzo, 1994] are used to analyze the instabilities of a longshore 
current whose background vorticity shows two extrema at both 
sides of the location of the maximum velocity. The analytical 
model is based on an idealized triangular velocity profile in­
spired on BH and defined in terms of two parameters, <\ and 
82, that determine the intensity of the frontshear and the back­
shear. A cubic polynomial is obtained as a dispersion relation­
ship, which is solved to obtain the growth rate, the frequency, 
and the flow pattern of the unstable modes. Because of the 
limitation imposed by the cubic dispersion relation, only one 
unstable mode is obtained for each wave number. However, 
looking at the response of the solution to the backshear and to 
the frontshear and looking at the shoreward or seaward loca­
tion of the flow pattern, a backshear wave (BS) or a frontshear 
wave (FS) can be identified. The dominance of the backshear 
or the frontshear is discussed in terms of 81 and 82 ; four regions 
can be distinguished (see Figure 4). In zones A and B the 
instability curves (growth rate against wave number) show two 
relative maxima, one can be associated with the BS and an-

other with the FS; in zone A the BS peak is dominant, whereas 
the FS peak is dominant in zone B. For values of (82> 81) in 
zones C and D the instability curves show only one maximum 
that can be associated either to the backshear (zone C) or to 
the frontshear (zone D). In zone B it is possible to find values 
of (82 , 81) for which the instabilities associated with the front­
shear and the backshear have similar growth rates, with close 
wave frequencies and wave numbers, leading to the possibility 
of having a shear wave modulated in the alongshore direction. 

For realistic current profiles in a beach of variable depth the 
numerical analysis confirms the existence of instabilities asso­
ciated with the frontshear. The frontshear waves extend over 
the width of the current, and their amplitude is significant only 
in a region bounded by the shoreline and the location of the 
maximum current with a characteristic celerity that suggests 
that the frontshear wave is convected by the portion of the 
longitudinal current in that region. The presence of the front­
shear wave reduces the amplitude of the backshear wave be­
tween the shoreline and the location of maximum velocity. 

Furthermore, stability analysis was performed numerically 
on both (1) a profile analyzed by Dodd et al. [1992] with only 
one extremum of background vorticity and (2) a profile ob­
tained from data measured at Leadbetter Beach that is slightly 
different at the shoreward region, having an additional extre­
mum of background vorticity. The second profile has a front­
shear instability mode that is more unstable than the dominant 
mode of the first one. In fact, this frontshear mode is still 
slightly unstable for a bottom shear stress with a drag coeffi­
cient of cd = 0.009, i.e., the value chosen by Dodd et al. [1992] 
to achieve a good agreement between the measured and the 
predicted intensity of the current. Then, the fact that the first 
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Figure 15. Comparison of measured and predicted frequency-cyclic wave number spectra: (a) iterative 
maximum likelihood estimator estimated frequency-cyclic wave number spectra at Leadbetter Beach on 
February 4, run c; (b) predicted frequency-cyclic wave number spectra for case LB 0 , cd = 0.004; (c) 
predicted frequency-cyclic wave number spectra for case LB 1 , c d = 0 .004; and (d) predicted frequency-cyclic 
wave number spectra for case LB 1 , cd = 0.009. 

profile is already stable for cd = 0.007 leads to the conjecture 
that the instabilities observed at the Leadbetter experiment 
could be due to the frontshear instability. 
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